КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Устойчивость, управляемость и наблюдаемость линейных систем
Рассмотрим линейную систему, описываемую уравнениями состояния (8.27). Устойчивость процессов в системе можно рассматривать по отношению к тем или иным переменным, характеризующим систему. Очевидно, из (8.27) следует, что поведение системы можно рассматривать по отношению к переменным состояния (вектору состояния x) или к выходным переменным (вектору выхода y). процессы в системе могут быть устойчивы по отношению к одной группе переменных и неустойчивы по отношению к другой. Чаще всего рассматривают устойчивость по отношению к переменным состояния x (t). за исключением особых случаев это будет справедливо и по отношению к вектору выхода y. Закон изменения вектора состояния x (t) определяется выражением (8.32). В случае линейной системы устойчивость процессов в ней зависит только от поведения свободной составляющей , обусловленной начальным значением вектора состояния, т.е. составляющей . (8.41) Пусть корни характеристического уравнения системы , (8.42) соответствующего системе (8.27), будут все различные , тогда переходная матрица состояния представима в виде (8.34), где М – модальная матрица, элементы которой не зависят от времени. В этом случае (8.41) запишем в виде . (8.43) Процессы в системе автоматического управления по отношению к переменным состояния будут асимптотически устойчивы, если при любом начальном значении x (0) свободная составляющая (8.43) с течением времени затухает, т.е. . Процессы в системе будут просто устойчивы, если , неустойчивы, если хотя бы для одной координаты . В соответствии с тремя рассматриваемыми случаями будем говорить об асимптотически устойчивой, устойчивой (нейтральной или находящейся на границе устойчивости) и неустойчивой линейных системах. Из приведенных определений и анализа выражения (8.43) следует, что система будет асимптотически устойчивой, если все действительные части корней строго отрицательны, т.е. . Система будет просто устойчивой, если , и неустойчивой, если для некоторого корня . Наличие кратных корней не меняет полученных результатов относительно асимптотической устойчивости и неустойчивости. Таким образом, необходимым и достаточным условием асимптотической устойчивости системы (8.27) является отрицательность действительных частей всех корней характеристического уравнения (8.42), т.е. все . Если в (8.42) раскрыть определитель, то в результате получим уравнение , где определяются через элемент матрицы А. К последнему уравнению обычным путем можно применить известные критерии устойчивости (Гурвица, Рауса, Михайлова и т.п.). Прежде чем сформулировать в общем виде понятия, связанные с управляемостью и наблюдаемостью систем, рассмотрим частный случай. Пусть система управления с одним входом и одним выходом описывается уравнениями состояния , , (8.44) где А – матрица; ; , , . Предположим, что матрица А имеет различные собственные значения . Сделаем в (8.44) замену x = Mz, где M – модальная матрица , , (8.45) где , , , . Скалярный элемент получается перемножением i -й строки матрицы на столбец В, а элемент – перемножением строки С на i -ю строку матрицы М. Уравнения (8.45) запишем в скалярном виде: . (8.46) На рис. 8.5 по уравнениям (8.46) построена схема моделирования.
Рис. 8.5 Из этого рисунка следует, что внутренняя структура системы представляет параллельное соединение n однотипных ветвей, соответствующих каждому характеристическому числу. Если все отличны от нуля, то с помощью входного сигнала можно влиять на все координаты (управлять ими). Однако при определенных условиях в зависимости от значений элементов матриц и В могут возникнуть случаи, когда один или несколько коэффициентов будут равны нулю. Тогда одна или несколько координат не будут зависеть от входного сигнала , не будут им управляться, т.е. соответствующая цепь оказывается разорванной по входу. Аналогичная картина может наблюдаться по отношению к выходу y. Если все отличны от нуля, то в выходном сигнале присутствуют (наблюдаются) все координаты . Если же один или несколько коэффициентов равны нулю, то соответствующие переменные состояния не могут быть измерены или не наблюдаются. В данном случае имеем разрыв во внутренней структуре системы на выходе соответствующих цепей. Из рассмотренного примера, в частности, следует, что система, описываемая уравнениями (8.44), будет полностью управляемой и полностью Коэффициенты определяются коэффициентами матрицы В и собственными числами матрицы А, т.е. фактически коэффициентами матрицы А. Отсюда следует, что управляемость системы зависит только от пары матриц А и В. Аналогично наблюдаемость будет зависеть от пары матриц А и С. Если система полностью управляема и наблюдаема, то порядок передаточной функции системы будет совпадать с порядком дифференциального уравнения в (8.44) и будет равен n. В случае неполной управляемости или наблюдаемости порядок передаточной функции будет меньше, чем n. Этот результат следует из структуры (см. рис. 8.5), так как в этом случае в части каналов нет связи между и y. Например, если или равны нулю, то порядок передаточной функции будет (n – 1), хотя порядок системы (8.44) равен n. Отсюда следует, что передаточная функция характеризует только полностью управляемую и наблюдаемую часть системы. Рассмотрим теперь свойства устойчивости системы в связи с ее управляемостью и наблюдаемостью. Пусть, например, , а все остальные . В этом случае по отношению к координатам (то же самое ) система неустойчива. Если в этом случае система не наблюдаема по координате , то и неустойчивая координата не влияет на выход системы. по отношению к выходу система будет вести себя как устойчивая. Отсюда следует, что если система полностью наблюдаема, то устойчивость по отношению к переменным состояния (иногда ее называют внутренней устойчивостью) будет совпадать с устойчивостью по отношению к выходной координате (внешней устойчивостью). В случае ненаблюдаемой системы это условие может не выполняться. Будем полагать, что уравнения (8.44) описывают объект управления. Регулятор, управляющий этим объектом (выход регулятора – это сигнал ), формирует сигнал управления, используя выходной сигнал y. Пусть объект управления является неустойчивым и неуправляемым по координате , тогда какой бы регулятор мы ни применили, с помощью обратной связи и регулятора невозможно сделать систему устойчивой, так как разорвана на входе первая цепь. Говорят, что в этом случае объект является нестабилизируемым. Дадим более строгие определения управляемости и наблюдаемости линейной системы (8.44) общего вида, т.е. в (8.44) будем полагать , , – матрицы соответствующих размерностей. Обозначим значения вектора состояния при , при , . Система (8.44) называется полностью управляемой, если для любых моментов времени и и любых заданных состояний и существует управление (), переводящее начальное состояние в конечное . Состояние системы (8.44) называется наблюдаемым, если в момент наблюдения можно однозначно определить по данным измерения и на конечном интервале времени , . Система (8.44) называется полностью наблюдаемой, если наблюдаемы все ее состояния в любые моменты времени. Американским ученым Р. Калманом были предложены критерии Матрица имеет размерность , а матрица – размерность , символ т означает операцию транспортирования матрицы. Столбцами матрицы являются столбцы матриц В, . Аналогично столбцы матрицы – это столбцы матриц . Если уравнения (8.44) описывают одномерную систему, то и Критерий управляемости и наблюдаемости. Система (8.44) является полностью управляемой только тогда, когда ранг матрицы управляемости равен n, и полностью наблюдаемой только тогда, когда ранг матрицы наблюдаемости равен n. Напомним, что под рангом матрицы понимается максимальный порядок ее минора, отличного от нуля. Пример 8.9. Рассмотрим одномерную систему второго порядка , . (8.47) Основная матрица системы А является сопровождающей. Предположим, что ее собственные числа , являющиеся корнями уравнения , различны (следовательно ). Приведем систему к канонической форме с помощью преобразования , . В результате , , где , , , . По уравнениям (8.47) найдем передаточную функцию системы Пусть , , , . Очевидно, , , , . Система является ненаблюдаемой по координате . Подстановка значений коэффициентов в передаточную функцию дает , (8.48) т.е. передаточная функция 2-гo порядка вырождается в передаточную функцию 1-го порядка. Если выбрать, например, , , , , то система будет неуправляема по второй координате . Таким образом, система с уравнениями состояния , (8.49) является неуправляемой по одной из внутренних координат и ненаблюдаемой по другой. При этом передаточная функция (8.48) при , вообще вырождается в нулевую и между переменными и y отсутствует всякая связь. Очевидно, по виду уравнения (8.49) трудно было бы предвидеть такие результаты. К (8.49) применим критерий управляемости и наблюдаемости , . Ранг обеих матриц меньше двух (равен единице). Система не полностью управляема и не полностью наблюдаема.
Дата добавления: 2014-12-07; Просмотров: 1527; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |