Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гамма-распределение и распределение Эрланга




Неотрицательная случайная величина имеет гамма-распределение, если ее плотность распределения выражается формулой

, , (5)

где и , – гамма-функция:

. (6)

Таким образом, гамма-распределение является двухпараметрическим распределением, оно занимает важное место в математической статистике и теории надежности. Это распределение имеет ограничение с одной стороны .

Если параметр формы кривой распределения – целое число, то гамма-распределение описывает время, необходимое для появления событий (отказов), при условии, что они независимы и появляются с постоянной интенсивностью .

В большинстве случаев это распределение описывает наработку системы с резервированием отказов стареющих элементов, время восстановления системы с резервированием отказов стареющих элементов, время восстановления системы и т. д. При различных количественных значениях параметров гамма-распределение принимает самые разнообразные формы, что и объясняет его широкое применение.

Плотность вероятности гамма-распределения определяется равенством, если

и : , (7)

где . (8)

Функция распределения . (9)

 

Заметим, что функция надежности выражается формулой:

. (10)

Гамма-функция обладает свойствами: , , (11)

откуда следует, что если – целое неотрицательное число, то

. (12)

Кроме того, нам в последующем потребуется еще одно свойство гамма-функции: ; . (13)

Пример. Восстановление радиоэлектронной аппаратуры подчиняется закону гамма-распределения с параметрами и . Определить вероятность восстановления аппаратуры за час.

Решение. Для определения вероятности восстановления воспользуемся формулой (9) .

Для целых положительных значений функции , а при .

Если перейти к новым переменным, значения которых будут выражены ; , то получим табличный интеграл:

.

В этом выражении решение интеграла в правой части можно определить по той же формуле:

,


а при будет

.

При и новые переменные будут равны и , а сам интеграл будет равен

.

Значение функции будет равно

.

Ответ: .

Найдем числовые характеристики случайной величины , подчиненной гамма-распределению

.

В соответствии с равенством (13) получим . (14)

Второй начальный момент найдем по формуле

,

откуда . (15)

Заметим, что при интенсивность отказов монотонно убывает, что соответствует периоду приработки изделия. При интенсивность отказов возрастает, что характеризует период изнашивания и старения элементов.

При гамма-распределение совпадает с экспоненциальным распределением, при гамма-распределение приближается к нормальному закону. Если принимает значения произвольных целых положительных чисел, то такое гамма-распределение называют распределением Эрланга -го порядка:

, . (16)

Здесь достаточно лишь указать, что закону Эрланга -го порядка подчинена сумма независимых случайных величин , каждая из которых распределена по показательному закону с параметром . Закон Эрланга -го порядка тесно связан со стационарным пуассоновским (простейшим) потоком с интенсивностью .

Действительно, пусть имеется такой поток событий во времени (рис. 6).

 

 

Рис. 6. Графическое представление пуассоновского потока событий во времени

 

Рассмотрим интервал времени , состоящий из суммы интервалов между событиями в таком потоке. Можно доказать, что случайная величина будет подчинена закону Эрланга -го порядка.

Плотность распределения случайной величины , распределенной по закону Эрланга -го порядка, может быть выражена через табличную функцию распределения Пуассона:

, , (17)

где .

Если значение кратно и , то гамма-распределение совпадает с распределением хи-квадрат .

Заметим, что функцию распределения случайной величины можно вычислить по следующей формуле:

, (18)

где определяются выражениями (12) и (13).

Следовательно, имеют место равенства, которые нам в дальнейшем пригодятся:

; . (19)

Пример. Поток производимых на конвейере изделий является простейшим с параметром . Все производимые изделия контролируются, бракованные укладываются в специальный ящик, в котором помещается не более изделий, вероятность брака равна . Определить закон распределения времени заполнения ящика бракованными изделиями и величину , исходя из того, чтобы ящик с вероятностью не переполнялся в течение смены.

Решение. Интенсивность простейшего потока бракованных изделий будет . Очевидно, что время заполнения ящика бракованными изделиями распределено по закону Эрланга


с параметрами и :

,

следовательно (18) и (19): ; .

Число бракованных изделий за время будет распределено по закону Пуассона с параметром . Следовательно, искомое число нужно находить из условия . (20)

Например, при [изделие/ч]; ; [ч]

из уравнения при

.

Случайная величина, имеющая распределение Эрланга, обладает следующими числовыми характеристиками (табл. 6).

Таблица 6

Плотность вероятности , , где – параметр масштаба ; – параметр формы, порядок распределения, целое положительное число
Функция распределения
Характеристическая функция
Математическое ожидание
Мода
Дисперсия
Асимметрия
Эксцесс
Начальные моменты , , ,
Центральные моменты ,

 

Заметим, что случайная величина, имеющая нормированное распределение Эрланга -го порядка, обладает следующими числовыми характеристиками (табл. 7).

Таблица 7

Плотность вероятности , , где – параметр масштаба ; – параметр формы, порядок распределения, целое положительное число
Функция распределения
Характеристическая функция
Математическое ожидание
Мода
Дисперсия
Коэффициент вариации
Асимметрия
Эксцесс
Начальные моменты , , ,
Центральные моменты ,

 




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 3225; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.