Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Двухкаскадные релаксаторы




УПРАВЛЯЕМЫЕ ИМПУЛЬСНЫЕ ГЕНЕРАТОРЫ

 

Управляемые генераторы осуществляют преобразование од­ного вида сигнала в другой. Существуют различные способы пре­образования: постоянное напряжение преобразуют в сигналы им­пульсного вида, входные импульсные сигналы укорачивают или удлиняют, осуществляют задержку сигнала и деление частоты сле­дования импульсов.

Генераторы находят широкое применение в различных систе­мах обработки информации. Они составляют основу всех импульс­ных устройств. Преобразователи «напряжение — частота» применя­ют в измерительных системах автоматического контроля В настоя­щее время разработаны преобразователи с нелинейностью характе­ристики порядка 0,002%, при этом погрешность преобразования со­ставляет 0,03%. Существует большое количество различных типов и видов схем преобразователей. Наиболее перспективными с точки зрения точности преобразования, являются линейные системы с им­пульсной ОС.

Наиболее экономичными генераторами являются схемы на тоан-зисторах разных типов проводимости. В таких генераторах оба транзистора закрыты а с приходом входного сигнала они одновре­менно открываются. Через транзисторы протекает ток только в мо­мент формирования выходного сигнала. В открытом состоянии тран­зисторы способны проводить большие токи. Длительность импульса выходного сигнала в генераторах определяется постоянной времени ЯС-цепи. Уменьшение длительности импульса осуществляется дисЬ-ференцирующей цепочкой, а удлинение - интегрирующей При Фор­мировании импульсного сигнала строго определенной длительности в генераторах применяется заряд (разряд) конденсатора постоян-ным током.

С появлением интегральных микросхем габариты генераторов значительно уменьшились. Лишь выходные устройства, обеспечива­ющие значительный ток нагрузки, выполняются на дискретных ком-понентах. Справочную информацию о включении ОУ в схему мож­но найти в гл. 1.

 

Релаксатор с нулевой мощностью покоя. В ждущем ре­жиме оба транзистора (рис. 12.1, а) закрыты. Входной импульс по­ложительной полярности открывает транзистор VT1 Коллекторный ток этого транзистора открывает транзистор VT2. Положительный перепад напряжения в коллекторе транзистора VT2 будет поддер­живать транзистор VT1 в открытом состоянии до тех пор пока кон­денсатор разряжается через резистор R1. Входное сопротивление транзистора УП можно считать значительно большим сопротив­ления резистора R1. Положительное напряжение в базе транзистора VT1 будет постепенно уменьшаться. Наступит момент, когда тран­зистор VT2 выйдет из насыщения. Отрицательный перепад напряжения в коллекторе транзистора VT2 пройдет в базу транзистора VT1 и еще больше его закроет. Наступает процесс разряда конден­сатора. В этом состоянии релаксатор будет ожидать очередного входного импульса.

Рис. 12.1

 

Длительность импульса определяется постоянной времени RiC. Применение переменного резистора R1 позволяет регулировать длительность выходного импульса (рис. 12.1,6).

Релаксатор на дифференциальном усилителе. Одновибратор (рис. 12.2) имеет относительно малое время возврата в исходное состояние. При отсутствии входного сигнала транзистор VT2 за­крыт, а диод находится в проводящем состоянии. Входной сигнал отрицательной полярности открывает транзистор VT1. Положитель­ный перепад напряжения в коллекторе пройдет на базу транзистора VT2 и закроет его. В этом состоянии схема будет находиться до тех пор, пока зарядится конденсатор. Постоянная времени равна RsCi. Порог открывания транзистора VT2 регулируется резистором R6. По окончании импульса конденсатор разрядится через открытый диод и резистор R2. Схема возвращается в исходное состояние.

Релаксатор на составном каскаде. В исходном состоянии оба транзистора (рис. 12.3, а) закрыты. Входной импульс положитель­ной полярности проходит через диод и открывает транзистор VT2. Происходит разряд конденсатора через диод VD1 и резистор R3. При этом транзистор VT1 также находится в открытом состоянии. После прекращения действия входного сигнала транзисторы будут в открытом состоянии, поскольку начинается процесс заряда кон­денсатора через резистор R1 и транзистор VII. Этот транзистор поддерживает в открытом состоянии и второй транзистор. Транзи­сторы будут в открытом состоянии до тех пор, пока конденсатор зарядится до напряжения питания. После этого оба транзистора закроются. На рис. 12.3,6 приведена зависимость длительности вы­ходного импульса от емкости конденсатора С1.

Рис. 12.2

Рис. 12.3

 

Последовательная схема включения транзисторов. Входной сиг­нал (рис. 12.4, а) открывает транзистор VT1. Одновременно откры­вается транзистор VT2. Положительная обратная связь через Rl, C1 ускоряет открывание обоих транзисторов. На базе транзистора VT1 возникает положительный перепад напряжения. По мере заряда конденсатора С1 положительное напряжение на базе транзистора VT1 уменьшается. Наступает момент, когда транзистор VT2 выхо­дит из насыщения. Отрицательный перепад напряжения в коллек­торе VT2 через конденсатор С1 передается на базу транзистора VT1. Это приводит к быстрому закрыванию обоих транзисторов. На рис. 12.4, а приведены эпюры напряжений в точках схемы и зави­симость длительности выходного импульса от емкости конденсато­ра С1.

Составной каскад с динамической связью. В исходном состоянии оба транзистора (рис. 12.5, а) открыты. Входной сигнал закрывает транзистор VT2. Положительный перепад напряжения на коллекто­ре этого транзистора закроет второй транзистор. В этом состоянии схема будет находиться до тех пор, пока конденсатор С1 зарядится через резистор R4 до напряжения 3 В, необходимого для откры­вания транзистора VT1. За открыванием транзистора VT1 следует открывание и транзистора VT2. При больших сопротивлениях ре­зистора R4 (>200 кОм), когда транзистор VT1 переходит в линей­ный режим, в схеме могут возникнуть автоколебания. Работа схемы проиллюстрирована на рис. 12.5,6.

Рис. 12.4

Рис. 12.5

 

Релаксатор с малым временем восстановления. Мультивибратор на транзисторах с разными типами проводимости (рис. 12.6, а) име­ет малое время восстановления. В исходном состоянии оба транзи­стора открыты. Входной импульс положительной полярности закры­вает транзистор VT1. Отрицательный перепад напряжения на кол­лекторе этого транзистора закроет диод, а следовательно, и тран­зистор VT2. Транзистор VT1 будет поддерживаться в закрытом состоянии через резистор R4. Начинается процесс разряда конден­сатора через резисторы R2 и R3. Через некоторое время напряже­ние на конденсаторе будет близко к нулю. После этого последует открывание транзистора VT2, затем и транзистора VT1. С этого момента конденсатор заряжается через открытый транзистор VT1 и базовую цепь транзистора VT2. Длительность импульса на вы­ходе мультивибратора равна 0,5 мс. На рис. 12.6,6 проиллюстри­рована работа релаксатора.

Расширители импульсов. Устройство (рис. 12.7, а) предназна­чено для расширения импульсов отрицательной полярности длительностью порядка микросекунд на время порядка единиц милли­секунд. В исходном состоянии транзистор открыт. Коллекторный ток транзистора выбирается таким, чтобы падение напряжения на ре­зисторах R3 и R4 равнялось напряжению питания. Транзистор находится на границе линейного и насыщенного режимов. Входной импульс отрицательной полярности проходит через диод. С прихо­дом входного сигнала транзистор закрывается. Конденсатор заря­жается от входного сигнала. После прекращения действия входного сигнала транзистор будет находиться в закрытом состоянии за счет напряжения на конденсаторе. Начинается процесс разряда конден­сатора через резистор R4. Схема рис. 12.7, б близка по принципу действия к описанной. Отличие заключается в использовании состав­ного транзистора на основе полевого и биполярного транзисторов. Время, в течение которого транзистор закрыт, определяется выраже­нием т= R4C lnUBx/UБ (рис. 12.7, а) и т=R4С 1nUвх/U0 (рис. 12.7,6), где UБ — напряжение в базе транзистора; U0 — напряжение отсеч­ки полевого транзистора; Uвх — амплитуда входного сигнала.

Рис. 12.6

Рис. 12.7

 

Схема задержки фронта импульса. Входной сигнал положитель­ной полярности с амплитудой 10 В подается на мостовую времяза-дающую цепочку (рис. 12.8). На базе транзистора VT1 напряжение падает, а на эмиттере возрастает, В тот момент, когда эти напря­жения сравняются, открывается транзистор VT1. За этим последует открывание транзистора VT2. Передний фронт выходного сигнала будет задержан относительно переднего фронта входного сигнала. Время задержки определяется параметрами R1C1 и R2C2. Эту задержку можно приблизительно определить по формуле tзад=R1C1(U1/U2)=0,5.105.104 = 5c.

Рис. 12.8

Рис. 12.9

 

Управляемый мультивибратор-преобразователь «напряжение — частота». Преобразователь напряжения в частоту построен по схеме релаксационного генератора с индуктивностью в коллекторе (рис. 12.9, а). Частота генератора определяется формулой f=UBX/4WBS10-8, где В — индукция насыщения сердечника транс­форматора; 5 — сечение сердечника трансформатора (см2); W — число витков обмотки.

Линейность характеристики преобразования наблюдается в диа­пазоне входных напряжений от 0,5 д© 5 В, при этом частота гене­ратора меняется от 50 до 250 кГц. Крутизна преобразования равна 50 кГц/В. Амплитуда выходного сигнала пропорциональна уровню входного сигнала. При изменении температуры частота генератора меняется. Если сердечник изготовлен из пермаллоевых сплавов 50НП, 34НК.МП и 65НП, то частота меняется на 8% при изменении температуры от — 50 до +50° С. Для сплавов 79НМ, 80НКС в том же диапазоне температур частота уходит на 10%. На рис. 12.9,6 дана зависимость частоты выходного сигнала от входного напря­жения.

Рис. 12.10

Рис. 12.11

 

Двухвходовый управляемый мультивибратор. Мультивибратор (рис. 12.10, а) может работать при низких питающих напряжениях. Уже начиная с 0,6 В, на обоих выходах возникают колебания. За­висимость периода импульсного сигнала от напряжений на входах показана на рис. 12.10, б. Длительность импульса составляет около 1 мс. При U8x1 = 0,6 В колебания срываются, если на Вход 2 будет подано напряжение более 2,5 В. Мостовой формирователь им­пульсов. Формирователь (рис. 12.11) построен на двух транзи­сторах разной проводимости. По­ложительная обратная связь осу­ществляется через мост R4, R6, Cl, C2. В исходном состоянии транзисторы закрыты, а конден­саторы моста разряжены. С при­ходом входного импульса поло­жительной полярности транзистор VTI открывается. Отрицательный потенциал в коллекторе транзи­стора VT1 откроет транзистор VT2. Коллекторный ток транзистора VT2 будет способствовать еще большему открыванию транзи­стора VT1. Лавинообразный процесс переведет оба транзистора в насыщение. Схема примет временное устойчивое состояние. Это состояние будет продолжаться до тех пор, пока протекает зарядный ток конденсатора С1. Как только напряжение на кон­денсаторах С1 и С2 будет близко к 6 В (половине напряже­ния питания), откроется диод VD2 и зарядный ток резко умень­шится. В результате транзистор VT2 начнет выходить из насыщения. Уменьшение коллекторного тока транзистора VT2 закроет транзи­стор VII. С этого момента начнется процесс возвращения схемы в исходное состояние. Конденсаторы С1 и С2 разряжаются через диоды VD2, VD3 и резистор R7. Время восстановления лежит в пределах 0,5 — 5% относительно длительности импульса. Длитель­ность импульса определяется выражением Г = т1п2. где т=R4С1 = R6С2.

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1341; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.