КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Простейшие случаи криволинейной корреляции
Определение: Если график регрессии Например, функции регрессии Y на X могут иметь вид:
Для того чтобы определить вид функции регрессии строят точки (x, Теория криволинейной корреляции решает те задачи, что и теория линейной корреляции (установление формы и тесноты корреляционной связи). Рассмотрим параболическую корреляцию второго порядка. Предположим, что данные n наблюдений (выборка) позволяют считать, что имеет место именно такая корреляция. В этом случае выборочное уравнение регрессии Y на X имеет вид:
где A, B, C – неизвестные параметры. Пользуясь методом наименьших квадратов, получаем систему линейных уравнений относительно неизвестных параметров (предлагаем вывести ее самостоятельно):
(2) Найденные из системы (2) параметры A, B, C подставляем в формулу (1), в итоге получаем искомое уравнение регрессии. Пример: Найти выборочное уравнение регрессии Y на X вида
Решение: Составим расчетную таблицу.
Подставив числа (суммы) нижней строки таблицы в систему (2), получим:
Решив эту систему, получаем: A = 1,94; В = 2,98; С = 1,1. Тогда искомое уравнение принимает вид:
Например, при x1=1 найдем по таблице Таким образом, найденное уравнение хорошо согласуется с данными выборки.
Дата добавления: 2014-12-27; Просмотров: 3350; Нарушение авторских прав?; Мы поможем в написании вашей работы! |