КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Случай несвязных выборок
T-критерий Стьюдента ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ РАЗЛИЧИЯ
Критерии носят название «параметрические», потому что в формулу их расчета включаются такие параметры выборки, как среднее, дисперсия и др. Как правило, в психологических исследованиях чаще всего применяются два параметрических критерия – это t-критерий Стьюдента, который оценивает различия средних для двух выборок и F– критерий Фишера, оценивающий различия между двумя дисперсиями.
Критерий t Стьюдента направлен на оценку различий величин средних X и Y двух выборок `X и `У, которые распределены по нормальному закону. Одним из главных достоинств критерия является широта его применения. Он может быть использован для сопоставления средних у связных и несвязных выборок, причем выборки могут быть не равны по величине. Для применения t-критерия Стьюдента необходимо соблюдать следующие условия:
1. Измерение может быть проведено в шкале интервалов и отношений.
2. Сравниваемые выборки должны быть распределены по нормальному закону.
В общем случае формула для расчета по t-критерию Стьюдента такова:
где
Рассмотрим сначала равночисленные выборки. В этом случае n1 = n2 = n, тогда выражение (9.2) будет вычисляться следующим образом:
В случае неравночисленных выборок n1 и n2, выражение (9.2) будет вычисляться следующим образом:
В обоих случаях подсчет числа степеней свободы осуществляется по формуле:
где n1и n2соответственно величины первой и второй выборки.
Понятно, что при численном равенстве выборок k = 2 • n – 2.
Рассмотрим пример использования /-критерия Стьюдента для несвязных и неравных по численности выборок.
Задача 9.1.
Психолог измерял время сложной сенсомоторной реакции выбора (в мс) в контрольной и экспериментальной группах. В экспериментальную группу (X) входили 9 спортсменов высокой квалификации. Контрольной группой (Y) являлись 8 человек, активно не занимающиеся спортом. Психолог проверяет гипотезу о том, что средняя скорость сложной сенсомоторной реакции выбора у спортсменов выше, чем эта же величина у людей, не занимающихся спортом.
Решение. Результаты эксперимента представим в виде таблицы 9.1, в которой произведем ряд необходимых расчетов:
Таблица 9.1
Средние арифметические составляют в экспериментальной группе4734: 9 = 526
Разница по абсолютной величине между средними Подсчет выражения 9.4 дает:
Тогда значение t эмп, вычисляемое по формуле (9.1), таково:
Число степеней свободы k = 9 + 8-2 = 5
По таблице 16 Приложения 1 для данного числа степеней свободы находим:
Строим «ось значимости»:
Таким образом, обнаруженные психологом различия между экспериментальной и контрольной группами значимы более чем на 0,1 % уровне, или, иначе говоря, средняя скорость сложной сенсомоторной реакции выбора в группе спортсменов существенно выше, чем в группе людей, активно не занимающихся спортом.
В терминах статистических гипотез это утверждение звучит так: гипотеза H0 о сходстве отклоняется и на 0,1 % уровне значимости принимается альтернативная гипотеза Н1 – о различии между экспериментальной и контрольными группами.
Дата добавления: 2014-12-27; Просмотров: 791; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |