Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Если не требуется предварительного установления числа групп, то используется другой способ определения величины равного интервала - по формуле Стерджесса




Группировку с равными интервалами строят тогда, когда исследуются количественные различия в величине признака внутри групп одинакового качества, а также если распределение носит более или менее равномерный характер. Если можно заранее установить определенное количество групп, то величину равного интервала можно вычислить по формуле

Из формулы видно, что выбор числа групп зависит от объема совокупности. Если групп оказывается много и они включают малое число единиц, то групповые показатели могут стать ненадежными. Поэтому альтернативой комбинационной группировке является многомерная группировка, которая осуществляется по комплексу признаков одновременно. Ее применение требует использования электронной вычислительной техники. С помощью специально разработанных электронных программ формируются однородные группы на основании близости по всему комплексу признаков.

Если для построения группировки используется только один признак, то такую группировку называются простой, если группировка проводится по нескольким признакам, ее называют сложной. Сложная группировка бывает или комбинационная, или многомерная.

Группировка - это распределение множества единиц исследуемой совокупности по группам в соответствии с существенным для данной группы признаком. Метод группировки позволяет обеспечивать первичное обобщение данных, представление их в более упорядоченном виде. Благодаря группировке можно соотнести сводные показатели по совокупности в целом со сводными показателями по группам. Появляется возможность сравнивать, анализировать причины различий между группами, изучать взаимосвязи между признаками. Группировка позволяет делать вывод о структуре совокупности и о роли отдельных групп этой совокупности. Именно группировка формирует основу для последующей сводки и анализа данных.

Для дальнейшей обработки собранных в ходе статистического наблюдения первичных данных широко используют и метод группировки.

Классификация и группировка как метод обработки и анализа первичной статистической информации. Статистическая таблица

 

В практической статистике широко применяется метод классификаций и группировок. Классификация - это систематическое распределение явлений и объектов по определенным группам, классам, разрядам на основании их сходства и различия [21].

Используют классификации: отраслевую; профессиональную; основных фондов; капитальных вложений; строительных машин. В статистике внешней торговли используется «Товарная номенклатура внешнеэкономической деятельности». В условиях возникновения различных форм хозяйствования используются классификаторы форм собственности, организационно-правовых форм хозяйствующих субъектов

Признаки, по которым проводится группировка, называют группировочными признаками. Группировочный признак иногда называют основанием группировки. Правильный выбор существенного группировочного признака дает возможность сделать научно обоснованные выводы по результатам статистического исследования. Группировочные признаки могут иметь как количественное выражение (объем, доход, курс валюты, возраст и т.д.), так и качественное (форма собственности предприятия, пол человека, отраслевая принадлежность, семейное положение и т.д.).

При определении числа групп, как правило, учитываются задача исследования, объем совокупности и виды признаков, которые берутся в качестве основания группировки. Например, по количественному признаку возраст населения может быть разбит на самые различные группы. Их число будет зависеть от поставленных задач. Например, это могут быть группы по возрасту трудоспособного населения; экономически активного населения и т.д.

Комбинационная группировка выполняется последовательно: группы, выделенные по одному признаку, затем выделяются в подгруппы по другому признаку, которые, в свою очередь, могут выделяться по следующему признаку. В этом случае число групп будет равно произведению числа выделенных групп на число группировочных признаков. Процедура определения оптимального числа групп основана на применении формулы Стерджесса:

, (1.1)

где n - число групп; N - число единиц совокупности.

Определение числа групп тесно связано с понятием величина интервала: чем больше число групп, тем меньше величина интервала, и наоборот. Интервал - разница между максимальным и минимальным значениями признака в каждой группе. Он определяет количественные границы групп, что для статистической практики имеет большое значение, особенно когда нужно образовать качественно однородные группы. Например, при выполнении группировки населения по возрастному составу выделяются 4 возрастные категории: дошкольный возраст – до 7 лет; школьный - с 7 до 17 лет; рабочий - с 17 до 55(60) лет; пенсионный - с 55 (60) лет.

Другим примером является невозможность образовывать группу 95 - 105%, поскольку это разные части совокупности. Следует образовать две группы: 95 - 100% и 101 - 105%. В этом случае границы, по которым различаются совокупности, абсолютно соблюдаются.

Каждый интервал имеет нижнюю (наименьшее значение признака) и верхнюю (наибольшее значение признака) границы или одну из них. Поэтому величина интервала есть разность между верхней и нижней границами интервала. Если у интервала указана лишь одна граница (у первого - верхняя, у последнего - нижняя), то речь идет об открытых интервалах. Если у интервала имеются и нижняя, и верхняя границы, то речь идет о закрытых интервалах. Закрытые интервалы подразделяются на равные и неравные (прогрессивно возрастающие, прогрессивно убывающие), а также специализированные и произвольные.

, (1.2)

где i - величина равного интервала; Хmax, Хmin - наибольшее и наименьшее значения признака; n - число групп.

, (1.3)




Поделиться с друзьями:


Дата добавления: 2014-12-23; Просмотров: 756; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.