КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы Рунге-Кутты
Методы Рунге-Кутты – это группа методов, широко применяемых на практике для решения ОДУ. В этих методах при вычислении значения искомой функции в очередной точке хi+1 используется информация о предыдущей точке хi, yi. Методы различаются объемом вычислений и точностью результата. Порядок метода Рунге-Кутты определяется кратностью вычисления значения производной искомой функции f(x,y ) на каждом шаге. В соответствии с этим метод Эйлера является методом Рунге-Кутты первого порядка, поскольку для получения очередного значения yi+1 функция f(x) вычисляется один раз в предыдущей точке хi, yi. В методах Рунге-Кутты более высоких порядков для вычисления очередного значения искомой функции в точке хi+1 значение правой части уравнения y’= f(x,y ) вычисляется несколько раз, количество которых и определяет порядок метода. Метод Рунге-Кутты 2-го порядка (Усовершенствованный метод Эйлера ). Вычисление значения искомой функции в точке хi+1 проводится в два этапа. Сначала вычисляют вспомогательную величину по методу Эйлера: (6.5.3-1) Затем значение производной искомой функции в точке (xi+1,yi+1) используется для вычисления окончательного значения функции: (6.5.3-2) Подставляя (6.5.3-1) в (6.5.3-2), окончательно получим расчетную формулу метода Рунге-Кутты 2 -го порядка: (6.5.3-3) Этот метод также называют методом прогноза и коррекций. Сначала находят грубое приближение по методу Эйлера (прогноз), а затем уточненное значение yi+1 (коррекция). В общем виде формулу (6.5.3-3) можно представить как (6.5.3-4) Метод Рунге-Кутты второго порядка имеет наглядную геометрическую интерпретацию (рис. 6.5.3-1). Построение проводится следующим образом: определяется пересечением перпендикуляра, восстановленного из точки xi+1 c касательной L1, проведенной к кривой y(x) в предыдущей точке (хi,yi). Затем в точке проводится прямая L2 с тангенсом угла наклона, равным . Прямую проводят через точку под углом, тангенс которого находим усреднением значений тангенсов углов наклона L1 и L2. Прямая L проводится параллельно через точку (хi,yi). Ее пересечение с перпендикуляром, восстановленным из точки хi+1, и дает уточненное значение yi+1. Рис. 6.5.3-1
Погрешность метода Рунге-Кутты второго порядка связана с величиной шага интегрирования отношением e2 =C2h3, где C2– произвольная постоянная.
Пример 6.5.3-1. Решить методом Рунге-Кутты второго порядка ОДУ y¢= 2x/y с начальными условиями x0 = 1 и y0 = 1 на отрезке [1;1.4] и шагом h = 0.2. Проводя дальнейшее обобщение формул Рунге-Кутты, для решения ОДУ первого порядка можно записать следующее: где Ф – линейная функция аргументов x, y, h и f(x,y), которая может быть представлена как (6.5.3-5) Величина n в (6.5.3-4) определяется порядком метода, а коэффициентам a2,a3, …,an, Р1, Р2, …,Pn подбирают такие значения, которые обеспечивают минимальную погрешность. Так, для метода Рунге-Кутты четвертого порядка (n=4) получена расчетная формула при следующих коэффициентах: a2= a3=1/2, a4=1, P1 = P4=1/6, P2 = P3 =2/6. Подставив значения коэффициентов в (6.5.3-4), имеем (6.5.3-6) Геометрическая интерпретация этого метода очень сложна и потому не приводится. Погрешность метода Рунге-Кутты четвертого порядка значительно меньше методов первого и второго порядков и пропорциональна величине h (e4 =C4h5).
Пример 6.5.3-2. Решить методом Рунге-Кутты четвертого порядка ОДУ y¢= 2x/y с начальными условиями x0 = 1 и y0 = 1 на отрезке [1;1.4] с шагом h = 0,2.
Сведем в таблицу результаты решения уравнения y¢=2x/y методами Рунге-Кутты, соответственно, первого (y1i), второго (y2i) и четвертого (y4i) порядков и сравним с результатами, полученными точным методом (yi).
На практике для обеспечения требуемой точности (при использовании любого приближенного метода решения ОДУ) применяется автоматический выбор шага методом двойного просчета. При этом в каждой точке хi по формуле, соответствующей выбранному методу, производится расчет yi с шагом h (yi(h)) и с шагом h/2 (yi(h/2)). Цель двойного просчета состоит в том, чтобы для каждой точки численного решения эти значения отличались на величину, не превышающую заданной погрешности e. В этом случае общая формула для оценки погрешности решения ОДУ методами Рунге-Кутты имеет следующий вид: где p – порядок метода Рунге-Кутты. Эта формула называется также правилом Рунге. Если | yi(h)) - yi(h/2)|< e, то шаг для следующей точки выбирается равным h, иначе шаг уменьшается вдвое и продолжается уточнение y i в точке хi.
Дата добавления: 2014-12-27; Просмотров: 5271; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |