Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вопросы к изучению. Цель.Раскрыть смысл суммы, разности, произведения, частного, полученного в результате измерения величины




Теоретическая часть

ПРАКТИЧЕСКАЯ РАБОТА. ОБОСНОВАНИЕ ВЫБОРА ДЕЙСТВИЙ ПРИ РЕШЕНИИ ТЕКСТОВЫХ ЗАДАЧ В НАЧАЛЬНОЙ ШКОЛЕ

Цель. Раскрыть смысл суммы, разности, произведения, частного, полученного в результате измерения величины. Обосновать на основе этого подхода выбор действий при решении текстовых задач в начальной школе.

1. Смысл натурального числа, полученного в результате измерения величины.

2. Смысл суммы, разности, произведения и частного таких чисел.

3. Обоснование выбора действий при решении текстовых задач в начальной школе.

Определения, теоремы, выводы

Ø Считают, что отрезок х состоит из отрезков х1, х2,..., хп, если он является их объединением и никакие два из них не имеют общих внутренних точек, хотя и могут иметь общие концы.

Ø Если отрезок х состоит из а отрезков, каждый из которых равен единичному отрезку е, то число а называют численным значением длины Х данного отрезка при единице длины Е.

Ø Пишут: Х = а × Е или а = mЕ (Х).

Ø натуральное число как результат измерения длины отрезка (или как мера длины отрезка) показывает, из скольких единичных отрезков состоит отрезок, длина ко­торого измеряется.

Ø При выбранной единице длины Е это число единственное.

Ø Теорема. Если отрезок х состоит из отрезков у и z и длины отрезков у и z выражаются натуральными числами, то мера длины отрезка х равна сумме мер длин его частей.

Ø Теорема. Если отрезок х состоит из отрезков у и z и длины отрезков х и у выражаются натуральными числами, то мера длины отрезка z равна разности мер длин отрезков х и у.

Ø Теорема. Если отрезок х состоит из а отрезков, длина которых равна Е, а отрезок длины Е состоит из b отрезков, длина которых равна Е1, то мера длины отрезка х при единице длины Е, равна а× b.

Ø Теорема. Если отрезок х состоит из а отрезков, длина которых равна Е, а отрезок длины Е1 состоит из b отрезков длины Е, то мера длины отрезка х при единице длины Е1 равна а: b.

Ø Измерение величины позволяет переходить от сравнения величин к сравнению чисел, от действий над величинами к соответствующим действиям над числами, и наоборот.

Практическая часть

1. Какой смысл имеет натуральное число 7, если оно получено в результате измерения: а) длины отрезка; б) площади фигуры; в) массы тела?

2. Верно ли, что при увеличении единичного отрезка в k раз соответствующие численные значения длин отрезка уменьшаются во столько же раз?

3. Объясните, почему следующие задачи решаются при помощи сложения:

а) Когда из ящика взяли 4 кг яблок, то в нем осталось 6 кг. Сколь­ко килограммов яблок было в ящике первоначально?

б) На пошив кофты израсходовали 2 м ткани, а на платье на 3 м больше. Сколько метров ткани израсходовали на платье?

4. Объясните, почему следующие задачи решаются при помощи вычитания:

а) От ленты длиной 5 м отрезали 2 м. Сколько метров ленты осталось?

б) С первого участка собрали 10 мешков картофеля, а со второго на 3 мешка меньше. Сколько мешков картофеля собрали со второго участка?

5. Обоснуйте выбор действий при решении следующих задач:

а) Мама купила 5 кг огурцов, 2 кг свеклы и помидоры. Сколько килограммов помидоров купила мама, если масса всех овощей 12 кг?

б) На одной полке 30 книг, на другой на 7 книг меньше. Сколько книг на двух полках?

в) От проволоки длиной 15 дм отрезали сначала 2 дм, а потом еще 4дм. Сколько дециметров проволоки осталось?

г) За лето первоклассники собрали 8 кг лекарственных трав, второклассники на 4 кг больше первоклассников, а третьеклассники на 3кг меньше второклассников. Сколько килограммов лекарственных трав собрали третьеклассники?

6. Объясните различными способами, почему следующие задачи решаются при помощи умножения:

а) В одной корзине 5 кг яблок. Сколько килограммов яблок в трех таких корзинах?

б) За один день Саша прочитывает 4 страницы книги. Сколько страниц в книге, если Саша прочитал ее за 6 дней.

7. Объясните различными способами, почему следующие задачи решаются при помощи деления:

а) 8 кг варенья надо разложить в банки по 2 кг в каждую. Сколько получится банок?

б) На садовом участке посадили 15 кустов смородины по 5 кустов в каждом ряду. Сколько было рядов?

8. Обоснуйте выбор действий при решении следующих задач:

а) С трех овец настригли 18 кг шерсти. Сколько шерсти можно получить с 5 таких овец?

б) В пятиэтажном доме 80 квартир. На каждом этаже в подъезде и 4 квартиры. Сколько подъездов в этом доме?

Творческие задания

Решите задачи и выполните проверку решения. Какие величины рассматривались в задачах?

1. Экспедиция высадилась на Северном полюсе 21 мая 1937 года. Какого числа закончилась работа станции “Северный полюс-1”, если исторический дрейф продолжался 8 месяцев и 29 дней?

2. Первое кругосветное путешествие закончилось 6 сентября 1522 года и продолжалось 2 года 11 месяцев 17 дней. Определите дату отплытия Магеллана из Сен-Лукара (морской порт Севильи).

3. Старейшие российские университеты - Московский и Ленинградский были основаны 11 января 1755 года и 8 февраля 1819 года. Сколько времени прошло между основаниями Московского и Ленинградского университетов? Сколько времени существует каждый из этих университетов?

4. В хозяйстве под гречиху и овес отвели 700 га, причем площадь, отведенная под овес, была на 60 га больше площади, отведенной под гречиху. Сколько гектаров было отведено под овес и сколько под гречиху?

5. Прямоугольный участок с периметром 900 м и отношением длин сторон 1:8 занят под чайную плантацию. С 1 га снимали 50 кг чайного листа. Выход готового чая составляет четвертую часть массы чайного листа. Сколько 50-граммовых пачек чая и на какую сумму получится с чайного листа, собранного с этого участка, если пачка чая стоит 40 коп.?

6. Из 6 кг свекловицы получается 600 г сахара рафинада. Сколько сахара получится из 500 кг свекловицы?

7. Делая в среднем по 42 км/час., поезд прошел расстояние между городами за 30 часов. С какой скоростью должен идти поезд, чтобы пройти это же расстояние за 24 часа?

8. За 125 кВт/час. электроэнергии уплатили 25 грн. Сколько надо уплатить за 75 кВт/час. электроэнергии?

9. 36 рабочих закончили работу за 20 дней, работая по 8 часов в день. За сколько дней 40 рабочих выполнят ту же работу, работая по 6 часов в день?

 




Поделиться с друзьями:


Дата добавления: 2014-12-29; Просмотров: 1191; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.