КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общее свойство минимально-фазовых устойчивых звеньев
Общим показателем свойств звена является принадлежность нулей передаточной функции к левой полуплоскости. Представляя передаточную функцию в форме (1.6), комплексный коэффициент передачи можно выразить как . (1.27) Рассмотрим сомножитель числителя jω-qi. Эта разность представляет собой вектор, начало которого лежит в точке qi, а конец на мнимой оси в точке jω. Фаза этого вектора характеризует поворот его относительно вещественной оси против часовой стрелки. На рисунке 1.10 построены два таких вектора для различных положений точки qi, обозначенных qi' и qi''. Из построения видно, что при одном и том же значении модуля комплекса jω-qi его фаза φ меньше в том случае, когда qi лежит в левой полуплоскости. Поэтому звенья, все нули передаточной функции лежат в левой полуплоскости (Re qi<0), называются минимально-фазовыми. Звенья, передаточные функции которых имеют хотя бы один нуль, лежащий в правой полуплоскости (Re qi.>0), называются неминимально-фазовыми. Рисунок 1.10 – Минимально- и неминимально-фазовые звенья
Для минимально-фазовых устойчивых звеньев между амплитудно-частотной и фазочастотной характеристиками существует однозначная зависимость и, следовательно, амплитудно-частотная характеристика однозначно определяет передаточную функцию системы.
Итак, если известна амплитудно-частотная характеристика звена и известно, что звено устойчивое и минимально-фазовое, то этого достаточно для того, чтобы найти все его частотные характеристики и, следовательно, полностью охарактеризовать поведение системы при любых сигналах, поступающих на вход. Для минимально-фазовой системы определение приближённого значения фазы φi(ωi) можно проводить непосредственно по среднему наклону ЛАЧХ в частоте ωi без построения ЛФЧХ. При этом (1.28)
Рисунок 1.11 – Определение фазы системы по амплитуде
При этом LВ(ωi) и LН(ωi) значения ЛАЧХ при частотах, отстоящих от ωi на одну декаду в сторону увеличения и уменьшения частот соответственно.
Дата добавления: 2014-12-25; Просмотров: 421; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |