Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Термодинамические процессы, циклы




 

Примеры решения задач

 

20.Азот массой г занимает объем л и находиться под давлением 0 МПа. Сначала этот газ нагревается при неизменном давлении до объема л, а затем при постоянном объеме до давления МПа. Найти:

а) изменение внутренней энергии газа;

б) совершенную системой работу ;

в) количество теплоты , переданной газу;

г) конечную температуру .

Построить график процесса на P – V -диаграмме.

 

Дано: г л МПа л МПа кг/моль Решение Анализ условия задачи начнём с построения графика процесса на P – V -диаграмме, учитывая соотношения величин , , , .  
 
а) –? б) –? в) –? г) –?    
 
 
 

Как видно из рисунка, система из состояния 1 переходит в конечное состояние 3 сначала по изобаре 1 – 2, а затем по изохоре 2 – 3. Из графика следует, что работа , совершенная газом в этом процессе, равна площади прямоугольника под изобарой 1 – 2, т. е.

Дж.

Для определения изменения внутренней энергии газа в рассматриеваемом процессе используем уравнение Клапейрона – Менделеева

pV = (1)

и выражение для внутренней энергии двухатомного идеального газа:

(2)

Из уравнений (1) и (2) для U следует

Дж.

Из первого закона термодинамики для количества теплоты , переданного газу, получается:

Дж.

Из уравнения Клапейрона – Менделеева (1) для конечной температуры газа Т 3 имеем:

К.

Ответ: Дж; Дж; Дж; К.

21.Одноатомный газ, имевший при давлении кПа объем м3, сжимался изобарически до объема ,0 м3, затем – адиабатически сжимался и на последнем участке цикла, расширялся при постоянной температуре до начального объема и давления. Найти теплоту , полученную газом от нагревателя, теплоту , переданную газом холодильнику, работу , совершенную газом за весь цикл, КПД цикла . Изобразить цикл на P – V -диаграмме.

 

Дано: кПа м3 ,0 м3 Решение Анализ условия задачи начнём с построения графика цикла на P – V -диаграмме, учитывая соотношения величин , , , , .    
? ? ? ?  
 
 
 

 

Как видно из рисунка, на первом участке цикла 1 – 2 газ сжимался изобарически, отдавая холодильнику количество теплоты и совершая работу . По первому закону термодинамики для перехода из состояния 1 в состояние 2 можно записать:

, (1)

где – изменения внутренней энергии газа. Выражение для внутренней энергии одноатомного газа имеет вид:

, (2)

где – количество вещества, а уравнение Клапейрона – Менделеева:

(3)

Используем уравнения (2), (3) и тот факт, что работа газа на участке 1 – 2 равна площади прямоугольника (с обратным знаком) под изобарой 1 – 2, для количества теплоты из соотношения (1) получим

Дж.

Знак “минус” показывает, что количество теплоты отдаётся газом холодильнику.

Количество теплоты , которое получает газ от нагревателя на изотерме 3 – 1 при температуре , по первому закону термодинамики равно:

, (4)

где – работа, совершённая газом на участке 3 – 1.

Как известно, работа газа при изотермическом процессе определяется формулой

. (5)

Состояния (3) и (1) находятся на одной изотерме, поэтому

. (6)

В то же время состояния (3) и (2), как видно из рисунка, соответствует одной адиабате, поэтому из уравнения Пуассона следует

(7)

где – показатель адиабаты одноатомного идеального газа . Исключая из уравнений (6) и (7) величины давления и , получим (8)

Используя формулы (3), (5) и (8) для количества теплоты из соотношения (4) имеем

Дж.

Работа , совершённая газом за цикл, как вытекает из первого закона термодинамики, Дж.

Для КПД цикла имеем:

Ответ: Дж; Дж; Дж;

 

 

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

2.20. Молекулярный кислород массой m = 250 г, имевший температуру Т 1 = 200 К, был адиабатно сжат. При этом была совершена работа А = 25 кДж. Определить конечную температуру Т 2 газа.

(354 K)

2.21. Газ адиабатически расширяется, изменяя объем в 2 раза, а давление в 2,64 раза. Определить молярные теплоемкости Cp и Cv этого газа.

(Cp = 29,1 Дж/(моль×К), Cv = 20,8 Дж/(моль×К))

2.22. Некоторое количество азота n, имеющего параметры состояния p 1, V 1, T 1, переходит при постоянной температуре в состояние 2, а затем при постоянном объеме – в состояние 3. Определить работу перехода 1 – 3, изменение внутренней энергии газа и теплоту, полученную при переходах, если в конце процесса установилась температура T 3 и давление p 3 = p 1. Изобразить процесс 1 – 3 на диаграмме V - T.

(A 1-3 = n RT 1 ln (T 3/ T 1); D U 1-3 = (5/2)n R (T 3 T 1);

Q = n R[ (5/2)(T 3- T 1)+ T 1 ln (T 3/ T 1) ])

2.23. Азот плотностью r1 = 1,4 кг/м3 занимает объем V 1 = 5 л при температуре t 1 = 27 ° C. Газ адиабатически переведен в состояние с плотностью r = 3,5 кг/м3. Определить температуру газа T 2 в конце перехода и изменение его внутренней энергии. Построить переход на диаграмме S – T.

(T 2 = 433 К; D U = 691 Дж)

2.24. Нагревается или охлаждается идеальный газ, если он расширяется по закону р 1/2× V = const? Изобразите этот закон на диаграмме (V – T). Считая этот процесс политропическим, определить, чему равен показатель политропы h. При расширении газа тепло подводится к нему или отводится от него? Сравнить теплоёмкость С этого процесса с СV.

(СV > С)

2.25. Нагревается или охлаждается идеальный газ, если он расширяется по закону р 2 V = const? Изобразите этот закон на диаграмме (р - Т). Считая этот процесс политропическим, определить чему равен показатель политропы h. При расширении газа тепло подводится к нему или отводится от него? Сравнить теплоёмкость С этого процесса с СV.

η = ; С > Сv)

2.26. В сосуде вместимостью V = 10 л находится идеальный газ под давлением p 1 = 1,0×105 Па. Стенки сосуда могут выдержать максимальное давление p 2 = 1,0×106 Па. Какое максимальное количество тепла Q можно сообщить газу? Постоянная адиабаты g = 1,4.

(Q = 23 кДж)

2.27. Некоторую массу азота сжали в 5 раз (по объёму) двумя разными способами: один раз изотермически, другой раз адиабатически. Начальное состояние газа в обоих случаях одинаково. Найти отношение соответствующих работ, затраченных на сжатие газа. Изобразить процессы в координатах P – V и Т – S.

(AТ / AА = 0,712)

2.28. В бензиновом автомобильном двигателе степень сжатия горючей смеси равна 6,2. Смесь засасывается в цилиндр при температуре t 1 = 15 ° C. Найти температуру t 2 горючей смеси к концу такта сжатия. Горючую смесь рассматривать как двухатомный идеальный газ, процесс считать адиабатным.

(324 °С)

2.29. Тепловая машина работает по циклу Карно, КПД которого h = 0,25. Каков будет холодильный коэффициент k машины, если она будет совершать тот же цикл в обратном направлении? Холодильным коэффициентом называется отношение количества теплоты, отнятого от охлаждаемого тела, к работе двигателя, приводящего в движение машину.

(k = 3)

2.30. Один моль одноатомного идеального газа совершает тепловой цикл Карно между тепловыми резервуарами с температурами t 1 = 127 °С и t 2 = 27 °С. Наименьший объем газа в ходе цикла V 1 = 5,0 л, наибольший V 3 = 20 л. Какую работу А совершает эта машина за один цикл? Сколько тепла Q 1 берет она от высокотемпературного резервуара за один цикл? Сколько тепла Q 2 поступает за цикл в низкотемпературный резервуар?

(Q 1 = 3,2×103 Дж; Q 2 = 2,4×103 Дж; A = 8,1×102 Дж)

2.31.Трехатомный идеальный газ с жесткой связью между молекуламисовершает цикл Карно, при этом в процессе адиабатного расширения объем газа увеличивается в 4 раза. Определите термический КПД цикла.

()

2.32. Найти КПД цикла, состоящего из двух изохор и двух изотерм, если в пределах цикла объём изменяется в k раз, а абсолютная температура в t раз. Рабочим веществом является идеальный газ с показателем адиабаты g.




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 1350; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.