Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Постоянный ток




Примеры решения задач

27. Пространство между пластинами плоского конденсатора заполнено многослойным диэлектриком, обладающим слабой электропроводностью. Диэлектрическая проницаемость диэлектрика монотонно уменьшается от пластины 1 от значения до значения у пластины 2. Удельная электропроводность монотонно уменьшается от пластины 1 от значения Ом.-1 м-1 до значения Ом.-1 м-1 у пластины 2. Конденсатор включен в цепь с постоянной ЭДС, и в нем устанавливается постоянный электрический ток силой А, текущий через диэлектрик от стороны 1 конденсатора к стороне 2. Найти величину свободного заряда , возникшего в диэлектрике при протекании тока.

Дано: Ом.-1м-1 Ом.-1м-1 А Решение Среда между пластинами конденсатора обладает как электропроводящими, так и диэлектрическими свойствами. Поэтому в решении используется закон Ома в дифференциальной форме: , (1) где – плотность тока; - напряженность электрического поля, и теорема Гаусса для диэлектрика. Направление линий тока вектора и направления векторов
–?

электрического смещения и у пластины 1 и пластины 2 соответственно показаны на рисунке.

Ток через среду постоянный, линии тока перпендикулярны к пластинам конденсатора, следовательно, для величин силы тока у пластины 1 и пластины 2 можно записать

где - площадь пластины конденсатора. Это же соотношение с учетом закона Ома (1) принимает форму

(2)

Для использования теоремы Гаусса проведем гауссову поверхность в виде прямоугольного параллелепипеда (пунктирная линия на рисунке), так, чтобы внутри находился диэлектрик. По теореме Гаусса для диэлектрика, учитывая направление векторов , имеем:

(3)

Связь между вектором электрического смещения и напряженностью электрического поля, как известно имеет вид:

(4)

Из соотношений (2) – (4) для величины заряда следует

Кл.

Ответ: нКл.

 

28. В схеме, изображенной на рисунке В, В, В, Ом, Ом, Ом. Внутреннее сопротивление источников тока пренебрежимо мало. Определить силы токов , , , текущих через сопротивления.

 

Дано: В В В Ом Ом Ом Решение    
–? –? –?  
 
 

Представленная в задаче схема постоянного тока, может быть рассчитана на основе законов Кирхгофа. Для применения законов Кирхгофа выделим два замкнутых контура А BCDА и AF Е . Зададим направление обхода этих замкнутых контуров по часовой стрелке, как показано на рисунке. Также будем рассматривать узел схемы А, в котором сходятся (или вытекают) токи , , .

По первому закону Кирхгофа для токов узла А следует уравнение:

(1)

В данном выражении учитывалось правило знаков: ток втекает в узел – положителен, ток вытекает из узла – отрицателен.

По второму закону Кирхгофа для контуров ABCDА и AF Е имеем соответственно:

(2)

. (3)

В выражениях (2) и (3) учитывалось правило знаков, определяемое выбранным направлением обхода контура. ЭДС положительна, если направление обхода контура совпадает с направлением ЭДС.

Подставляя известные численные значения сопротивлений участков цепи и ЭДС источников тока в уравнения (1) – (3), получим

(4)

Таким образом, получается система трех линейных уравнений с тремя искомыми неизвестными , , . Решение такой системы дается формулами Крамера:

, , , (5)

где – определитель системы (4); – определитель при первом неизвестном ; – определитель при втором неизвестном ; – определитель при третьем неизвестном .

По значениям коэффициентов системы уравнений (4) следует:

(6), (7)

(8), (9)

Из выражений (5) – (9) для величин сил токов получается

А, А, А.

Ответ: А; А; А.

29. Сила тока в проводнике убывает со временем по закону ( А, с-1). Определить заряд, прошедший через поперечное сечение проводника за время с.

Дано: А с-1 с Решение Величина силы тока связана с зарядом q, проходящим через поперечное сечение проводника, соотношением . (1) Следовательно, за бесконечно малый промежуток времени через поперечное сечение проводника пройдет заряд
–?

(2)

Величина заряда q, прошедшего через поперечное сечение проводника за промежуток времени , может быть найдена интегрированием выражения (2):

Кл.

Ответ: Кл.

 

30. В медном проводнике объемом см3 при прохождении по нему постоянного тока за время ,0 мин выделилось количество теплоты Дж. Найти напряжённость электрического поля в проводнике, плотность тока , скорость упорядоченного движения электронов . Считать, что на каждый атом меди приходится один свободный электрон.

Проводимость, плотность и молярная масса меди соответственно ,

Дано: 6,0 см3 = ,0×10-6 м3 мин = 60 с Дж Ом-1×м-1 Кг/м3 г/моль = 63,5×10-3 кг/моль Решение а) для решения используем закон Ома в дифференциальной форме , (1) закон Джоуля – Ленца в дифференциальной форме (2) где – удельная электропроводность меди, – удельная тепловая мощность тока. Из формул (1) и (2) для напряженности электрического поля в проводнике следует:  
а) –? б) –? в) -?  
 
 

В/м.

б) из выражения (1) для плотности тока имеем

А·м-2.

в) скорость упорядоченного движения электронов и плотность тока связана соотношением

, (3)

где – заряд электрона; – концентрация свободных электронов. Учитывая, что на каждый атом меди приходится один свободный электрон, для концентрации свободных электронов получается

, (4)

где – число Авогадро.

Из формул (3) и (4) для скорости упорядоченного движения электронов следует

м/c

Ответ: а) В/м, б) А· , в) м/c.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

3.16. Зазор между обкладками плоского конденсатора заполнен веществом с проницаемостью e = 7 и удельным сопротивлением r = 100 ГОм×м. Емкость конденсатора С = 3000 пФ. Найти силу тока утечки через конденсатор при подаче на него напряжения U = 2000 В.

(I = 9,7×10-7 A)

 

3.17. В схеме, изображенной на рисунке, e1 = 10 В, e2 = 20 В, e3 = 30 В, R 1 = 1,0 Ом, R 2 = 2,0 Ом, R 3 = 3,0 Ом, R 4 = 4,0 Ом, R 5 = 5,0 Ом, R 6 = 6,0 Ом, R 7 = 7,0 Ом. Внутреннее сопротивление источников тока пренебрежимо мало. Найти силы токов I1, I2, I3.

 
 

(I1 = -1,02 A, I2 = 0,90 A, I3 = -0,12 A)

 

3.18. Определить заряд Q, прошедший по проводу с сопротивлением R = 3,0 Ом при равномерном нарастании напряжения на концах провода от U 0 = 2,0 B до U = 4,0 B в течение 20 с.

(Q = 20 Кл)

 

3.19. Сила тока в проводнике сопротивлением 20 Ом нарастает в течение времени D t = 2,0 с по линейному закону от I 0 = 0 до I max = 6,0 A. Определить количество теплоты Q, выделившееся в этом проводнике за первую секунду.

(Q = 60 Дж)

 

3.20. Концентрация электронов проводимости в меди n = 1,0·1029 м-3. Считая условия нормальными, определить среднее время между двумя столкновениями электрона с решеткой (среднее время свободного пробега). Определить среднюю длину свободного пробега электрона. Удельное сопротивление меди r = 1,7×10-8 Ом×м.

(l = 4,7×10-9 м)

 

3.21. По медному проводнику сечением 0,20 мм2 течет ток. Определить, какая сила действует на отдельный электрон проводимости со стороны электрического поля, если объемная плотность энергии, выделяемая в проводнике, равна 9,0×103 Дж/м3. Определить плотность и силу тока в проводнике.

F = 20×10-22 H; j = 7,3×105 A2; I = 0,15 A)

 

3.22. Два источника тока, соединенные одинаковыми полюсами, с ЭДС и и внутренними сопративлениями и включены параллельно сопративлению R = 2,0 Ом. Определите силу тока через это сопративление.

(I = 0,78 A)

 




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 702; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.