КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Механические колебания и волны. Пример решения задачи
Пример решения задачи
35. Вдоль шнура распространяется поперечная волна, уравнение которой имеет вид м, где – смещение точек шнура; – время, с; – координата точек шнура, м. Найти: а) период колебания точек шнура ; б) скорость распространения волны ; в) длину волны ; г) разность фаз колебаний точек шнура, находящихся на расстоянии м; д) амплитуду скорости поперечного движения частиц шнура.
где - амплитуда смещения, – циклическая частота, – волновое число, – начальная фаза. Из сравнения условий задачи и выражения (1) можно найти искомые величины. Период колебания вязан с циклической частотой соотношением: . Поэтому с. Волновое число определяется выражением . Поэтому для скорости распространения волны имеем По найденным значениям периода колебаний и скорости волны можно определить длину волны из соотношения м. Разность фаз колебаний любых двух точек шнура определяется формулой . Поэтому для точек шнура из условия задачи имеем рад. Скорость смещения точек шнура в поперечном направлении получается дифференцированием по времени выражения (1), т.е. (2) Из условия задачи и формулы (2) для максимального значения скорости получается: Ответ: а) с; б) м/с; в) м; г) рад; д) м/с. ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ 4.1. Найти смещение от положения равновесия точки, отстоящей от источника колебаний на расстояние l = l/12, для момента времени t = T /6. Амплитуда колебания А = 0,050 м. (0,043 м)
4.2. Амплитуда гармонического колебания 5,0 см, период 4,0 с. Найти максимальную скорость колеблющейся точки и ее максимальное ускорение. ( = 7,8·10-2 м/с; am = 0,12 м/с2)
4.3. Уравнение плоской волны имеет вид y = 0,34×cos(0,20 t – 0,40 x), где y – смещение частиц среды, и все числовые значения заданы в системе СИ. Записать числовые значения частоты и периода колебаний, волнового числа, фазовой скорости и длины волны, а также максимальное значение смещения. ( = 0,50 м/с; l = 16 м)
4.4. Поперечная волна распространяется вдоль упругого шнура со скоростью = 15 м/с. Период колебания точек шнура Т = 1,2 с. Определить разность фаз Dj колебаний двух точек, лежащих на луче и отстоящих от источника волн на расстояниях x 1 = 20 м, x 2 = 30 м. (200°)
4.5. Материальная точка совершает гармонические колебания согласно уравнению м. Определить: 1) амплитуду колебаний; 2) период колебаний; 3) начальную фазу; 4) максимальную скорость точки; 5) максимальное ускорение; 6) через сколько времени после начала отсчета точка будет проходить положение равновесия. (Т = 2 с; м/c; )
4.6. Период затухающих колебаний Т = 4,0 с; логарифмический декремент затухания начальная фаза При t = T /8 смещение точки х = 4,5 см. Написать уравнение этого колебания. Построить график этого колебания в пределах двух периодов. ( см) 4.7. Поперечная волна, распространяясь вдоль упругого шнура, описывается уравнением м. Определите: длину волны, фазу колебаний, смещение, скорость и ускорение точки, расположенной на расстоянии = 9 м от источника колебаний в момент времени ( )
Дата добавления: 2014-12-26; Просмотров: 788; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |