Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Поля в гидродинамике




При изучении движения жидкости рассматривают её как сплошную среду. Таким образом, рассматривают не движение конечного числа отдельных частиц, а поля различных физических величин: скорости, плотности, давления и т.д. Такие поля можно назвать материальными полями. Математически эти поля описывают системой функций от координат и времени. Такой подход типичен не только для механики сплошных сред, но и для ряда других областей физики.

В общем случае поле является пространственным (трёхмерным), иногда задачу упрощают, и рассматривают двумерные (плоские) или одномерные поля. В этом случае полагают, что физические величины зависят от одной или двух пространственных координат.

Если физические величины не зависят от времени, то поле называют стационарным, в противном случае - нестационарным.

При математическом описании полей предполагают, что существуют пределы значений физических величин в точке. Такой подход упрощает физическую реальность, так как не учитывает дискретность строения материи, но такая абстракция оправдана, нужно только разумно ограничивать область полученных результатов.

Так как в практических задачах размеры обтекаемых тел намного порядков больше молекулярных размеров, то в этих задачах жидкость можно рассматривать как сплошную среду.

Скалярным называют поле, которое в каждой точке пространства характеризуют одним числом. Скалярное поле описывают одной функцией, зависящей от трёх координат. (Например, поле плотности или температуры).

Основное свойство скалярной функции а(х123) состоит в том, что её численное значение не меняется при преобразовании координат.

Если перейти от старой х123 к новой х¢1¢2¢3 системе координат, то значения плотности или температуры в фиксированной точке пространства, естественно, не изменяются:

а (х¢1¢2¢3) = а (х123).

Векторным называют поле, которое в каждой точке пространства характеризуется величиной и направлением.

Например, поле скоростей жидкости. Вектор в пространстве трёх измерений может быть задан тремя компонентами:

а1123), а2123), а3123),

то есть, тремя функциями от трёх переменных. Это можно записать в виде матрицы-столбца:

 

а ÜÞ

Введём новую декартову систему координат с тем же началом, но с другим направлением осей.

Пусть l ij - направляющий косинус оси x¢j относительно оси xi (i = 1,2,3; j = 1,2,3). Вычислим проекции того же вектора на новые оси координат:

 

a¢1 = l 11 a1 + l 21 a2 + l3 1 a3;

a¢2 = l 21 a1 + l 22 a2 + l23 a3;

a¢3 = l 31 a1 + l 32 a2 + l33 a3.

Следовательно, вектор подчиняется определённому закону преобразования его компоненти отличается от скалярной величины, численное значение которой не меняется при преобразовании координат.

То есть,сам вектор не меняется в новых координатах, а меняются его компоненты.

Это выражение можно представить в индексной форме записи как сумму:

 

 

Или ещё более короткой

При такой записи пользуются двумя правилами:

1. Соглашение о суммировании. По индексу, встречающемуся дважды (немой индекс), производят суммирование от 1 до 3.

2. Соглашение о ранге. Индекс, встречающийся один раз (свободный индекс), пробегает значения от 1 до 3.

Таким образом, уравнение с одним свободным индексом означает запись трёх уравнений.

Помимо скалярных и векторных полей в механике сплошной среды рассматриваются ещё и тензорные поля.

Многие задачи физики и механики сплошной среды приводят к понятию тензора. Тензор, хотя и является обобщением понятия вектора, имеет гораздо более сложный характер. Разница заключается в том, что вектор просто интерпретируется геометрически, у тензора такого наглядного представления не существует.

Описание происходит в прямолинейных (декартовых) системах координат. Координаты обозначаем х1, х2, х3, единичные векторы по осям - i1,i2, i3.

Предположим, что в результате вращения осей координат как единого целого вокруг начала координат, мы перешли к новой системе координат Ox1´x2´x3´. Обозначим косинус угла между осями xi и x´k старой и новой системы aik = cos (x´i^xk). Для удобства пользования дальнейшими формулами приводим таблицу.

Таблица 3.1

  х1 х2 х3
х´1 a11 a12 a13
х´2 a21 a22 a23
х´3 a31 a32 a33

 

 

Теперь перейдём к определению тензора. Пусть каждому направлению соответствует вектор (не обязательно коллинеарный n).

Направлениям осей соответствуют векторы , разложение которых опишем подробно:

 

(3.6.1)

 

Если векторы для любого направления выражаются лишь через 3 вектора согласно формуле

 

, (3.6.2)

то множество векторов образует тензор Т.

Обозначим векторы, определяемые тензором для направлений новых осей . Подставляя в предыдущее выражение (2.6.2) вместо направления новых осей (по очереди), получим:

 

(3.6.3)

 

Эти условия равносильны (2.6.2) и их можно взять за новое определение тензора, если для каждой системы координат имеется тройка векторов , преобразующаяся по формулам (2.6.3) в тройку , отвечающую другой системе координат, то этим определяется тензор.

Аналогичное определение можно дать и для вектора, если в уравнении (2.6.3) заменить векторы на проекции вектора. Поэтому тензор является обобщением вектора. Формулы (2.6.3) можно записать в сокращённом виде

 

.

 

Тензор определяется векторами , которые в свою очередь определяются своими компонентами (3.6.1). Поэтому тензор вполне задаётся 9 числами, которые называются компонентами тензора, и обычно записываются в виде

 

.

 

Из (2.6.1) и (2.6.3) можно получить формулы преобразования компонент тензора при переходе к новой системе координат:

, (3.6.4)

где t´kl – компоненты в новой системе.

Эти формулы можно также взять за определение тензора.

Простейшими примерами являются нулевой и единичный тензоры.

Согласно (2.6.4) у нулевого тензора в любой системе координат компоненты равны 0.

.

Для того, чтобы в дальнейшем не испытывать трудностей при использовании тензоров, запишем некоторые математические правила.




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 585; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.