КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дифференциальных уравнений
Задача Коши для дифференциального уравнения n-го порядка: (9.1) заключается в отыскании функции , удовлетворяющей этому уравнению с начальными условиями: , где - заданные числа. Задача Коши для системы дифференциальных уравнений (9.2) заключается в отыскании функций , удовлетворяющих этой системе и начальным условиям . Систему, содержащую производные высших порядков и разрешенную относительно старших производных искомых функций, путем введения новых неизвестных функций можно привести в виду (9.2). В частности, дифференциальное уравнение n-го порядка приводится к виду (9.1) с помощью замены переменных , что дает следующую систему
Если удается найти общее решение системы или уравнения, то задача Коши сводится к отысканию значений произвольных постоянных. Но найти общее решение задачи Коши удается в редких случаях, чаще приходится решать задачу приближенно. Приближенные методы в зависимости от формы, в которой они представляют решение, можно разделить на две группы. 1. Аналитические методы, дающие приближенное решение дифференциального уравнения в виде аналитического выражения. 2. Численные методы, дающие приближенное решение в виде таблицы. В дальнейшем будем считать, что для рассматриваемых уравнений выполнены условия существования и единственности решения.
Дата добавления: 2014-12-26; Просмотров: 397; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |