Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод Эйлера




Численные методы

Рассмотрим дифференциальное уравнение

(9.6)

с начальным условием . Выбрав достаточно малый шаг h, построим систему равноотстоящих точек .

В методе Эйлера приближенные значения вычисляются по формулам . При этом искомая интегральная кривая , проходящая через точку , заменяется ломанной с вершинами ; каждое звено этой ломанной, имеет направление той интегральной кривой уравнения , которая проходит через точку .

Если правая часть уравнения в некотором замкнутом прямоугольнике удовлетворяет условиям

,

,

то имеет место следующая оценка погрешности:

,

где - значение точного решения уравнения при , а - приближенное значение, полученное на n-м шаге в этой же точке.

На практике, для оценки точности полученных результатов, применяют двойной пересчет: расчет повторяют с шагом и погрешность более точного значения в точке оценивают приближенно так:

 

Пример 9.5. Используя метод Эйлера, составить таблицу приближенных значений решения дифференциального уравнения с начальным условием y(0)=2 на отрезке [0;0.5] с шагом h с точностью до трёх знаков. Выполним это задание в Mathcad

Для этого разделим промежуток [ a,b ] на n частей и найдем шаг интегрирования h.

 

 

 

Разделим промежуток интегрирования на 2n частей и

пересчитаем значения yi с новым шагом h/2

 

 
 
 

 

 

 

 

Решением уравнения является таблица значений уi, найденных в точках отрезка [0;0.5] с шагом h=0,01 с точностью до трёх знаков.

 

Рис 9.1 Решение примера 9.5 в Mathcad методом Эйлера

 




Поделиться с друзьями:


Дата добавления: 2014-12-26; Просмотров: 495; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.