КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вычислительный подход
С вычислительной точки зрения дискриминантный анализ очень похож на дисперсионный анализ. Рассмотрим следующий простой пример. Предположим, что вы измеряете рост в случайной выборке из 50 мужчин и 50 женщин. Женщины в среднем не так высоки, как мужчины, и эта разница должна найти отражение для каждой группы средних (для переменной Рост). Поэтому переменная Рост позволяет вам провести дискриминацию между мужчинами и женщинами лучше, чем, например, вероятность, выраженная следующими словами: "Если человек большой, то это, скорее всего, мужчина, а если маленький, то это вероятно женщина". Вы можете обобщить все эти доводы на менее "тривиальные" группы и переменные. Например, предположим, что вы имеете две совокупности выпускников средней школы - тех, кто выбрал поступление в колледж, и тех, кто не собирается это делать. Вы можете собрать данные о намерениях учащихся продолжить образование в колледже за год до выпуска. Если средние для двух совокупностей (тех, кто в настоящее время собирается продолжить образование, и тех, кто отказывается) различны, то вы можете сказать, что намерение поступить в колледж, как это установлено за год до выпуска, позволяет разделить учащихся на тех, кто собирается и кто не собирается поступать в колледж (и эта информация может быть использована членами школьного совета для подходящего руководства соответствующими студентами). В завершение заметим, что основная идея дискриминантного анализа заключается в том, чтобы определить, отличаются ли совокупности по среднему какой-либо переменной (или линейной комбинации переменных), и затем использовать эту переменную, чтобы предсказать для новых членов их принадлежность к той или иной группе. Дисперсионный анализ. Поставленная таким образом задача о дискриминантной функции может быть перефразирована как задача одновходового дисперсионного анализа. Можно спросить, в частности, являются ли две или более совокупности значимо отличающимися одна от другой по среднему значению какой-либо конкретной переменной. Однако должно быть ясно, что если среднее значение определенной переменной значимо различно для двух совокупностей, то вы можете сказать, что переменная разделяет данные совокупности. В случае одной переменной окончательный критерий значимости того, разделяет переменная две совокупности или нет, дает F -критерий. Как уже было описано, F статистика по существу вычисляется, как отношение межгрупповой дисперсии к объединенной внутригрупповой дисперсии. Если межгрупповая дисперсия оказывается существенно больше, тогда это должно означать различие между средними. Многомерные переменные. При применении дискриминантного анализа обычно имеются несколько переменных, и задача состоит в том, чтобы установить, какие из переменных вносят свой вклад в дискриминацию между совокупностями. В этом случае вы имеете матрицу общих дисперсий и ковариаций, а также матрицы внутригрупповых дисперсий и ковариаций. Вы можете сравнить эти две матрицы с помощью многомерного F -критерия для того, чтобы определить, имеются ли значимые различия между группами (с точки зрения всех переменных). Эта процедура идентична процедуре Многомерного дисперсионного анализа. Так же как в многомерном дисперсионном анализе, вначале можно выполнить многомерный критерий, и затем, в случае статистической значимости, посмотреть, какие из переменных имеют значимо различные средние для каждой из совокупностей. Поэтому, несмотря на то, что вычисления для нескольких переменных более сложны, применимо основное правило, заключающееся в том, что если вы производите дискриминацию между совокупностями, то должно быть заметно различие между средними.
Дата добавления: 2014-12-26; Просмотров: 426; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |