КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Без искажения
Проекций, то на эту плоскость проекций прямой угол проецируется Если одна из сторон прямого угла параллельна какой-либо плоскости Перпендикулярность Из рассмотрения задачи о нахождении натуральной величины отрезка прямой уровня следует вывод о том, что плоская фигура или угол (а он образуется двумя сторонами фигуры) на плоскость проецируется без искажения, если плоскость фигуры и плоскость проекции - параллельны. Исключение составляет прямой угол. Формулировка теоремы о частном случае проецирования прямого угла звучит так: А. Перпендикулярность двух прямых, Решим следующую задачу: Через точку М провести прямую, перпендикулярную отрезку АВ. Сколько возможно решений, и какие они могут быть (рис. 35)?
Обратим внимание на прямую АВ. Это - фронталь. На основании только что сформулированной теоремы на фронтальной плоскости проекций можно из точки М2 провести прямую n2, перпендикулярную А2В2: n М ^ n ┴АВ => n2 М2 ^ n2 ┴А2В2.
Могут существовать два варианта решения, в зависимости от того, как расположены прямые n и АВ по отношению друг к другу.
1. Если п и АВ пересекаются, l2 — фронтальная проекция их точки пересечения 1. Горизонтальная проекция 11 точки 1 может быть найдена по принадлежности к прямой АВ и тем самым определится единственное положение прямой п (другими словами, задача имеет единственное решение): 1 = n АВ => 12 = п2 А2В2 => 11 = 1112 А1В1 => n1 = М1 l1
2. Если п и АВ - не пересекаются, то есть п и АВ - скрещивающиеся прямые, тогда прямые п и АВ общих точек не имеют. Все прямые, скрещивающиеся с АВ под прямым углом, будут располагаться в плоскости, проходящей через точку М и перпендикулярной к отрезку АВ. Поскольку через точку в плоскости можно провести бесконечное множество прямых, решений будет бесконечное множество. На комплексном чертеже все фронтальные проекции таких прямых будут совпадать с п2, горизонтальные проекции их будут изображаться пучком прямых, проходящих через точку М1. На рис. 35 одна из таких прямых, m1, показана пунктиром. Б. Перпендикулярность прямой и плоскости. Общий геометрический признак перпендикулярности прямой и плоскости (прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости) в начертательной геометрии звучит так: если прямая перпендикулярна плоскости, то проекции этой прямой перпендикулярны одноименным проекциям прямых уровня этой плоскости. Чтобы лучше себе это представить, решим еще одну задачу: плоскость S задана параллельными прямыми а и b. Из точки М опустить на эту плоскость перпендикуляр т (рис. 36). Использование теоремы о частном случае проецирования прямого угла даёт возможность предложить следующий план решения задачи: 1. В плоскости Σ(а//b) в любом месте строим её фронталь и горизонталь; 2. Через точки М1 и M2проводим перпендикуляры к h1 и f2 (к горизонталь
Заметим, что точку пересечения прямой и плоскости мы не находили, да это и не требовалось по условию задачи. Чтобы лучше себе представить, что мы проделали, уясним, что эта точка пересечения и не будет в общем случае находится в месте пересечения проведенной нами фронтали и горизонтали плоскости. Но если бы мы из точки пересечения фронтали и горизонтали плоскости восставили к ней перпендикуляр, то все перпендикуляры к плоскости, проведенные к ней из любой точки, были бы параллельны этому восставленному перпендикуляру. При решении многих задач о перпендикулярности прямой и плоскости следует иметь в виду и то обстоятельство, что плоскость и перпендикуляр к ней - «жёсткая» система: если плоскость - общего положения, то и перпендикуляр к ней - прямая общего положения; если плоскость - частного положения, то и перпендикуляр к ней - прямая частного положения. В. Перпендикулярность двух плоскостей. Признак перпендикулярности двух плоскостей можно сформулировать следующим образом: плоскость Σ перпендикулярна плоскости Ω если плоскость Σ проходит через прямую, перпендикулярную плоскости Ω. Представление решений многих задач на комплексном чертеже облегчает и следующее обстоятельство: если плоскости Σ и Ω перпендикулярны, то перпендикулярны и соответствующие проекции их прямых уровня: h1Σ ┴ h1Ω ^ f2Σ ┴ f2Ω где h1 – горизонтальная проекция горизонтали; f2 - фронтальная проекция фронтали, а Σ и Ω определяют принадлежность их к той или иной плоскости.
Дата добавления: 2014-12-27; Просмотров: 747; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |