КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Описание спортивных соревнований с помощью графов
Некоторые сведения из теории графов
Предположим, что футбольная команда вашего вуза участвует в соревнованиях и играет с командами других вузов. Пусть общее число команд равно шести. Вашу команду обозначим буквой А, а другие команды – буквами В, С, D, E и F. Через несколько недель после начала соревнований окажется, что некоторые из команд уже сыграли друг с другом, например: А с С,D,F, В с С, Е, F, С с А, В, D с А, Е,F, Е с В,D,F, F с А,В,D,Е. Это можно изобразить при помощи такой геометрической схемы. Каждую команду представим точкой или маленьким кружочком и соединим отрезком те пары точек, которые соответствуют командам, уже игравшим друг с другом. Тогда для данного списка проведенных игр получим схему, изображенную на рис. 1. Схема такого вида называется графом. Она состоит из нескольких точек А, В, С, D, Е, F, называемых вершинами, и нескольких соединяющих эти точки отрезков, таких как АС или ЕВ, называемых ребрами графа. Из рис. 1 видно, что точки пересечения некоторых ребер графамогут не являться его вершинами; это происходит потому, что наш граф изображен на плоскости. Рис. 1. Граф G сыгранных футбольных матчей в ходе соревнований
Возможно, удобнее было бы представлять себе его ребра нитями, проходящими друг над другом в пространстве. При изображении на плоскости вершины графа во избежание путаницы должны отмечаться достаточно отчетливо (например, кружочками).
Рис. 2. Граф состязания восьми команд
Каждую совокупность игр любого турнира можно представить соответствующим графом. Наоборот, если задан некоторый граф, т. е. фигура, состоящая из точек – вершин, соединенных прямолинейными отрезками – ребрами, то его можно рассматривать как схему такого состязания. В качестве примера рассмотрим граф, изображенный на рис. 2. Его можно представлять себе как граф, соответствующий состязанию восьми команд, где команда А уже играла с командами В, Е, D, команда В играла с А, F, G, С и т. д.
Дата добавления: 2014-12-27; Просмотров: 640; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |