КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Парные корреляцииКорреляции (CORRELATIONS) Раздел CORRELATIONS содержит команды для получения парных (Bivariate…) и частных (Partial…) корреляций. Команда Bivariate… меню производит вычисление таблицы коэффициентов Пирсона, характеризующего степень линейной связи, а также коэффициентов ранговой корреляции BTAU и Спирмена (Spearman). В синтаксисе эта команда имеет вид: CORRELATIONS /VARIABLES=v9 lnv14m /PRINT=TWOTAIL NOSIG. для обычного коэффициента корреляции и NONPAR CORR /VARIABLES=v10 v9 v14 /PRINT=SPEARMAN. или NONPAR CORR /VARIABLES=v10 WITH v9 v14 /PRINT=KENDALL. для ранговых корреляций Подкоманда /VARIABLES в этих командах указывает список переменных или два списка переменных, разделенных словом WITH. Если указывается один список переменных, то рассчитываются коэффициенты корреляции каждой переменной с каждой переменной (квадратная таблица). Если указываются два списка, разделенные служебным словом WITH, то рассчитываются коэффициенты корреляции всех переменных, расположенных слева от WITH, с переменными, расположенными справа (прямоугольная таблица). Ключевое слово WITH можно использовать только в окне синтаксиса. Процедура C ORRELATIONS выводит: r - коэффициент корреляции Пирсона; число наблюдений (объектов) в скобках и значимость коэффициента корреляции. Коэффициент корреляции Пирсона: . Коэффициент корреляции может принимать значения от -1 до +1. При этом значимый отрицательный коэффициент корреляции позволяет принять гипотезу о наличии линейной отрицательной связи. Метод, используемый для проверки гипотезы, предполагает, также, двумерную нормальность распределения (X,Y). На практике это соответствует тому, что увеличению значения одной переменной в большинстве случаев соответствует уменьшение значения коррелируещей с ней переменной. Значимый положительный коэффициент корреляции свидетельствует о положительной связи переменных: увеличению одной переменной соответствует увеличение другой. Чем ближе абсолютное значение r к единице, тем более линейный характер носит зависимость исследуемых переменных; близость к 0 означает отсутствие линейной связи. Насколько полученное значение коэффициента корреляции не случайно, определяется по величине значимости (Sig. (2-tailed)) - вероятности получить большее, чем выборочное значение коэффициента корреляции. Для оценки значимости коэффициента Пирсона используется критерий t=r*(N-2)/(1-r2)0.5, который в условиях нормальности и независимости переменных имеет распределение Стьюдента. Таким образом, наряду с формулировкой нулевой гипотезы здесь формулируется предположение о двумерной нормальности - довольно жесткое условие. Для оценки значимости коэффициентов Спирмена и Кендалла используется нормальная аппроксимация этих коэфициентов. По-сути коэффициент ранговой корреляции является коэффициентом корреляции между переменными, преобразованными в ранги (или процентили), поэтому для исследования значимости с помощью этих коэффициентов не требуется делать предположения о распределении данных. Пример выдачи коэффициентов Спирмена представлен в табл.4.15. Не обнаруживается значимой связи возраста и образования (что вполне естественно), но среднемесячный душевой доход связан с образованием (это мы уже показывали). Таблица 4.15. Коэффициенты корреляции Спирмена ( Spearman's rho )
Дата добавления: 2014-12-27; Просмотров: 428; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |