КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Множественные сравнения
Множественные сравнения являются одной из труднейших проблем в математической статистике. В действительности при анализе данных исследователи сталкиваются с ними на каждом шагу. Пусть, например, мы рассматриваем 100 независимых таблиц сопряженности пар переменных, отбирая среди них "интересные" для анализа с использованием критических значений хи-квадрат 5%-го уровня значимости. Тогда при отсутствии связи переменных мы будем в среднем в таких испытаниях получать 5 "интересных" (значимых) таблиц, даже если связь между всеми переменными отсутствует. Таким образом, какие бы ни были плохие данные, мы что-либо будем интерпретировать. Но при повторном сборе данных - мы можем получить противоположные результаты. Вот что значит множественные сравнения! Сравнение групповых средних это одна из немногих задач, где удалось справиться с этой проблемой. Суть задачи состоит в отборе значимых различий множества пар групп, определяемых переменной группирования. Сравнение пары средних мы научились делать с помощью процедуры T-TEST и, казалось бы, можно, задавшись уровнем значимости, пропустить через этот тест все пары групп и отобрать различающиеся по за данному уровню. Однако, перебирая группы, мы перебираем множество случайных чисел, и, благодаря этому, можем наткнуться на значимое отличие с гораздо большей вероятностью, чем при рассмотрении одной пары групп. В частности, если группы независимы и не связаны с тестируемой переменной, при 10 сравнениях по уровню значимости 0.05 мы с вероятностью 1-(1-0.05)10=0.4 случайно получим хотя бы одно "значимое" различие. Для пояснения механизма работы тестов множественных сравнений остановимся на 3-х из 20 тестах, реализованных в SPSS. Согласно методу Бонферрони, в случае множественных сравнений назначается более строгий уровень значимости для попарных сравнений. Он определяется так: задается уровень значимости для множественных сравнений a m и в качестве попарного уровня значимости берется a =(1/k)a m., где k - число сравнений. Пусть Ai - событие, состоящее в том, что мы в i -том сравнении выявили существенное отличие средних, когда средние совпадают, тогда, в соответствии с заданным уровнем значимости, P{Ai}<a. Ясно, что P{A1+A2+…+Ak}≤P{A1}+P{A2}+…+P{Ak}<ka =a m, поэтому метод Бонферрони гарантирует нас от ошибки с вероятностью, не меньшей a m. В независимых сравнениях неравенство P{A1+A2+…+Ak}<ka, будет выполняться почти точно, так как 1-(1-a)k» ka. Критерий несколько жестче, чем необходимо, так как средние в группах связаны - их взвешенная сумма равна общему среднему. Метод Шеффе построен на контрастах. С его помощью проверяется гипотеза равенства нулю сразу всех контрастов, не только тех, что сравнивают пары групп. В результате он часто оказывается еще строже, чем критерий Бонферрони. Таблица 4.10. Oneway, сравнение среднего промедианного логарифма доходов.
Таблица 4.11. Oneway, проверка однородности дисперсий
Таблица 4.12. Oneway, обычный дисперсионный анализ
Таблица 4.13. Oneway, группы неразличимых средних
Критерий Тьюки основан на одновременных доверительных интервалах разности матожиданий в группах. Этот критерий из трех рассматриваемых, пожалуй, наиболее разумен. Предположение об одновременном равенстве разностей всех групповых матожиданий - слишком сильное предположение, в критерии Тьюки такого не предполагается. Таблица 4.14. Oneway, множественные попарные сравнения
В качестве примера рассмотрим различие среднего промедианного логарифма доходов в группах по образованию, группы которого несколько укрупнены: recode v10 (4 5 =4) (6 7 8=5) (else=copy) into w10. var lab w10 "образование". value lab w10 1 "Высшее" 2 "н/высш" 3 "ср. спец" 4 "среднее" 5 "ниже среднего". ONEWAY lnv14m BY w10 /STATISTICS DESCRIPTIVES HOMOGENEITY /POSTHOC = BTUKEY SCHEFFE BONFERRONI ALPHA(.05). На основании полученной выдачи видим, что:
Следует заметить, что мы не показали здесь часть таблицы попарных сравнений с результатами для метода Бонферрони и Шеффе; результаты аналогичны, но для указанной пары групп значимость различия по Шеффе - 0.041, по Бонферрони - 0.016. Это показывает большую чуствительность теста Тьюки.
Дата добавления: 2014-12-27; Просмотров: 727; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |