Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Степенью поляризации называется величина




где Imax и Imin, - соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором. Для естественного света? Пропускаемого анализатором. Для естественного света Imax = Imin и Р = 0, для плоскополяризованного Imin = 0 и Р = 1. Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные главной плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е, например кристаллы. Из природных кристаллов, давно используемых в качестве поляризатора, следует от метить турмалин. Рассмотрим классические опыты с турмалином.

Поляризация света при отражении и преломлении на границе двух диэлектриков. Если естественный свет падает на границу раздела двух диэлектриков (например, воздуха и стекла), то часть его отражается, а часть преломляется и распространяется во второй среде. Устанавливая на пути отраженного и преломленного лучей анализатор (например, турмалин), убеждаемся в том, что отраженный и преломленный лучи частично поляризованы: при поворачивании анализатора вокруг лучей интенсивность света периодически усиливается и ослабевает. Дальнейшие исследования показали, что в отраженном луче преобладают колебания, перпендикулярные плоскости падения, в прелом ленном - колебания, параллельные плоскости падения (изображены стрелками).

Степень поляризации (степень выделения световых волн с определенной ориентацией электрического (и магнитного) вектора) зависит от угла падения лучей и показателя преломления. При угле падения ib (угол Брюстера), определяемого соотношением (n21 - показатель преломления второй среды относительно первой), отраженный луч является плоскополяризованным (содержит только колебания, перпендикулярные плоскости падения). Преломленный же луч при угле падения iB поляризуется максимально, но не полностью. Если свет падает на границу раздела под углом Брюстера, то отраженный и преломленный лучи взаимно перпендикулярны (tgiB = siniB/cosiB, n21 = siniB / sini2 (i2 - угол преломления), откуда cosiB = sini2). Следовательно, iB – i2 = p/2, но i¢b = iB (закон отражения), поэтому i'B + i2 = p/2. Степень поляризации отраженного и преломленного света при различных углах падения можно рассчитать из уравнений Максвелла, если учесть граничные условия для электромагнитного поля на границе раздела двух изотропных диэлектриков (так называемые формулы Френеля).

 

Явление электромагнитной индукции. Опыты Фарадея. Закон э.м. индукции. Синусоидальные токи в контуре. Индуктивность контура, самоиндукция. Токи при размыкании и замыкании цепи. Взаимная индукция. Трансформаторы. Энергия магнитного поля. Магнитные свойства вещества. Намагниченность. Магнитное поле в веществе. Диа- и парамагнетизм. Ферромагнетики и их свойства. Уравнения Максвелла.

Явление электромагнитной индукции было открыто английским физиком М. Фарадеем. Это явление заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.

Рассмотрим классические опыты Фарадея, с помощью которых было обнаружено явление электромагнитной индукции.

Опыт I (рис. 179, а). Если в замкнутый на гальванометр соленоид вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания наблюдается отклонение стрелки гальванометра (возникает индукционный ток); направления отклонений стрелки при вдвигании и выдвигании магнита противоположны. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При изменении полюсов магнита направление отклонения стрелки изменится. Для получения индукционного тока магнит можно оставлять неподвижным, тогда нужно относительно магнита передвигать соленоид.

Опыт П. Концы одной из катушек, вставленных одна в другую, присоединяются к галь­ванометру, а через другую катушку пропускается ток. Отклонение стрелки гальванометра наблю­дается в моменты включения или выключения тока, в моменты его увеличения или уменьшения или при перемещении катушек друг относительно друга (рис. 179, б). Направления отклонений стрелки гальванометра также противоположны при включении или выключении тока, его увеличе­нии или уменьшении, сближении или удалении катушек.

Обобщая результаты своих многочисленных опытов, Фарадей пришел к количествен­ному закону электромагнитной индукции. Он показал, что всякий раз, когда проис­ходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток; возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электро­магнитной индукции. Значение индукционного тока, а следовательно, и э.д.с. электро­магнитной индукции определяются только скоростью изменения магнитного потока, т. е.

 

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызва­вшему этот индукционный ток.

Закон Фарадея можно сформулировать ещё и таким образом: э.д.с. электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным: э. д. с. не зависит от способа изменения магнитного потока. Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в переменное магнитное поле. Эти токи оказыва­ются замкнутыми в толще проводника и поэтому называются вихревыми. Их также называют токами Фуко — по имени первого исследователя.

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био — Савара — Лапласа (см. (110.2)), пропорциональ­на току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре:

(126.1)

где коэффициент пропорциональности L называется индуктивностью контура.

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндук­ции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, все­гда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что L21 и L12 равны друг другу, т. е.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции.

Принципиальная схема трансформатора показана на рис. 186. Первичная и вторичная катушки (обмотки), имеющие соответственно N1 и N2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. , то в ней возникает переменный ток I1, создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сердечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторич­ной обмотке появление э.д.с. взаимной индукции, а в первичной — э.д.с. самоиндукции.

Отношение числа витков N2/N1, показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации.

Если N2/N1>1, то имеем дело с повышающим трансформатором, увеличивающим переменную э.д.с. и понижающим ток (применяются, например, для передачи электро­энергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если N2/N1<1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применя­ются, например, при электросварке, так как для нее требуется большой ток при низком напряжении).

Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезнове­нием тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затра­чивается током на создание этого поля.

Энергию магнитного поля можно представить как функцию величин, характеризу­ющих это поле в окружающем пространстве. Для этого рассмотрим частный слу­чай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим

Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процессами, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Для того чтобы разобраться в магнитных свойствах сред и их влиянии на магнитную индукцию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества.

Опыт показывает, что все вещества, помещенные в магнитное поле, намагничива­ются. Рассмотрим причину этого явления с точки зрения строения атомов и молекул, положив в основу гипотезу Ампера (см. § 109), согласно которой в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах.

Всякое вещество является магнетиком, т. е. оно способно под действием магнитного поля приобретать магнитный момент (намагничиваться). Для понимания механизма этого явления необходимо рассмотреть действие магнитного поля на движущиеся в атоме электроны.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движение, которое эквивалентно круговому току. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется составляющая магнитного поля, направленная проти­воположно внешнему полю. Наведенные составляющие магнитных полей атомов (молекул) складываются и образуют собственное магнитное поле вещества, ослабляющее внешнее магнитное поле. Этот эффект получил название диамагнитного эффекта, а вещества, намагничивающиеся во внешнем магнитном поле против направления поля, называются диамагнетиками.

В отсутствие внешнего магнитного поля диамагнетик немагнитен, поскольку в дан­ном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома (он равен векторной сумме магнитных моментов (орбиталь­ных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (например, Bi, Ag, Au, Сu), большинство органических соединений, смолы, углерод и т. д.

Так как диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными веществами существуют и парамагнитные — вещества, нама­гничивающиеся во внешнем магнитном поле по направлению поля.

Подобно тому, как для количественного описания поляризации диэлектриков вводи­лась поляризованность (см. § 88), для количественного описания намагничения магнетиков вводят векторную величину — намагниченность, определяемую магнитным моментом единицы объема магнетика:

Помимо рассмотренных двух классов веществ — диа- и парамагнетиков, называемых слабомагнитными веществами, существуют еще сильномагнитные вещества — ферромагнетики — вещества, обладающие спонтанной намагниченностью, т. е. они намагниче­ны даже при отсутствии внешнего магнитного поля. К ферромагнетикам кроме основ­ного их представителя — железа (от него и идет название «ферромагнетизм») — от­носятся, например, кобальт, никель, гадолиний, их сплавы и соединения.

В основе теории Максвелла лежат рассмотренные выше четыре уравнения:

1. Электрическое поле (см. § 137) может быть как потенциальным (ЕQ), так и вихревым (ЕB), поэтому напряженность суммарного поля Е = ЕQ + ЕB. Так как цир­куляция вектора ЕQ равна нулю (см. (137.3)), а циркуляция вектора ЕB определяется выражением (137.2), то циркуляция вектора напряженности суммарного поля

Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):

Это уравнение показывает, что магнитные поля могут возбуждаться либо движущими­ся зарядами (электрическими токами), либо переменными электрическими полями.

3. Теорема Гаусса для поля D (см. (89.3)):

(139.1)

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью r, то формула (139.1) запишется в виде

4. Теорема Гаусса для поля В (см. (120.3)):

Итак, полная система уравнений Максвелла в интегральной форме:

 

Гармонические колебания и их свойства (механические). Сложение гармонических колебаний. Математический и физический маятники. Свободные и вынужденные колебания. Резонанс.

Колебаниями называются движения или процессы, которые характеризуются опреде­ленной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электро­магнитные и др. Колебания называются свободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воз­действий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания — колебания, при которых колеб­лющаяся величина изменяется со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам: 1) колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому; 2) различные периодические процессы (процессы, повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний. Гармонические колеба­ния величины s описываются уравнением типа

(140.1)

где А — максимальное значение колеблющейся величины, называемое амплитудой колебания, w0 — круговая (циклическая) частота, j — начальная фаза колебания в мо­мент времени t=0, (w0t+j) — фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до –1, то s может принимать значения от +А до –А.

Определенные состояния системы, совершающей гармонические колебания, повто­ряются через промежуток времени Т, называемый периодом колебания, за который фаза колебания получает приращение 2p, т. е.

откуда

(140.2)

Величина, обратная периоду колебаний,

(140.3)

т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний.

Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс С тела (рис. 201).

Если маятник отклонен из положения равновесия на некоторый угол a, то в соот­ветствии с уравнением динамики вращательного движения твердого тела (18.3) момент M возвращающей силы можно записать в виде

(142.4)

Математический маятник — это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеб­лющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити. Момент инерции математического маятника

(142.8)

где l — длина маятника.

Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты

воспользовавшись методом вращающегося вектора амплитуды (см. § 140). Построим векторные диаграммы этих колебаний (рис. 203). Tax как векторы A1 и А2 вращаются с одинаковой угловой скоростью w0, то разность фаз (j2—j1) между ними остается постоянной. Очевидно, что уравнение результирующего колебания будет

Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы (частоты вынуждающего переменного напряжения) к ча­стоте, равной или близкой собственной частоте колебательной системы, называется резонансом (соответственно механическим или электрическим). При значение wрез практически совпадает с собственной частотой w0 колебательной системы.

 

Электростатика. Закон сохранения электрического заряда. Закон Кулона. Характеристики электростатического поля (напряженность, потенциал). Силовые линии поля. Поток вектора напряженности. Принцип суперпозиции электростатических полей. Поле диполя. Теорема О. -Гаусса для электростатического поля в вакууме. Применение теоремы к расчету равномерно заряженной бесконечной плоскости. Циркуляция вектора напряженности электростатического поля. Напряженность как градиент потенциала. Эквипотенциальные поверхности. Типы диэлектриков. Поляризация диэлектриков. Сегнетоэлектрики. Конденсаторы. Энергия электростатического поля.

Несмотря на огромное разнообразие веществ в природе, существует только два типа электрических зарядов: заряды, подобные возникающим на стекле, потертом о кожу (их назвали положительными), и заряды, подобные возникающим на эбоните, потертом о мех (их назвали отрицательными); одноименные заряды друг от друга отталкиваются, разноименные - притягиваются.

Опытным путем (1910-1914) американский физик Р. Милликен (1868-1953) показал, что электрический заряд дискретен, т.е. заряд любого тела составляет целое кратное от элементарного электрического заряда e (e=1,6*10-19 Кл ). Электрон (me=9,11*10-31 кг) и протон (mp=1,67*10-27 кг) являются соответственно носителями элементарных отрицательного и положительного зарядов.

Из обобщения опытных данных был установлен фундаментальный закон природы, экспериментально подтвержденный в 1843 г. английским физиком М. Фарадеем (1791-1867), - закон сохранения заряда: алгебраическая сумма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.

Электрический заряд - величина релятивистски инвариантная, т.е. не зависит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.

Закон Кулона. Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует. Понятие точечного заряда как и материальной точки является физической абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k - коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т.е. является центральной, и соответствует притяжению (F<0) в случае разноименных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид:

где F12 - сила, действующая на заряд Q1 со стороны заряда Q2, r12 - радиус-вектор, соединяющий заряд Q2 с зарядом Q1, r=|r12|. На заряд Q2 со стороны заряда Q1 действует сила F21=-F12.

В СИ коэффициент пропорциональности равен

Тогда закон Кулона запишется в окончательном виде

Величина ε0 называется электрической постоянной; она относится к числу фундаментальных физических постоянных и равна

ε0=8,85*10-12 Кл2/(Н*м2), или ε0=8,85*10-12 Ф/м,

где фарад (Ф) - единица электрической емкости. Тогда

1/(4πε0)=9*109 м/Ф.

Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:

Как следует из формул, напряженность поля точечного заряда в вакууме

Направление вектора E совпадает с направлением силы, действующей на положительный заряд. Если поле создается положительным зарядом, то вектор E направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положительного заряда); если поле создается отрицательным зарядом, то вектор E направлен к заряду.

Единица напряженности электростатического поля - ньютон на кулон (Н/Кл); 1 Н/Кл - напряженность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н; 1 Н/Кл=1 В/м, где В (вольт) - единица потенциала электрического поля.

Графически электростатическое поле изображают с помощью линий напряженности - линий, касательные к которым в каждой точке совпадают с направлением вектора E. Линиям напряженности приписывается направление совпадающее с направлением вектора напряженности. Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются.

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности электростатического поля, условились проводить их с определенной густотой: число линий поверхности, пронизывающих единицу площади поверхности, перпендикулярно линиям напряженности, должно быть равно модулю вектора E. Тогда число линий напряженности, пронизывающих элементарную площадку dS, нормаль n которой образует угол α с вектором E, равно EdScosα=EndS, где En - проекция вектора E на нормаль n к площадке dS. Величина

называется потоком вектора напряженности через площадку dS. Здесь dS=dS, n - вектор, модуль которого равен dS, а направление совпадает с направлением нормали n к площадке. Выбор направления вектора n (а следовательно, и dS) условен, так как его можно направить в любую сторону. Единица потока вектора напряженности электростатического поля - 1 В*м.

Для произвольной замкнутой поверхности S поток вектора E сквозь эту поверхность

где интеграл берется по замкнутой поверхности S. Поток вектора E является алгебраической величиной: зависит не только от конфигурации поля E, но и от выбора направления n. Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т.е. нормаль, направленная наружу области охватываемой поверхностью.

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил, т.е. результирующая сила F, действующая со стороны поля на пробный заряд Q0, равна векторной сумме сил Fi, приложенных к нему со стороны каждого из зарядов Qi

F=Q0E и Fi=Q0Ei, где E - напряженность результирующего поля, а Ei - напряженность поля, создаваемого зарядом Qi. Подставляя последние выражения в уравнение, получаем

Формула выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность E результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции позволяет рассчитать электростатические поля любой системы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+Q, -Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называется плечом диполя l. Вектор

p=|Q|l

совпадающий по направлению с плечом диполя и равный произведению заряда |Q| на плечо l, называется электрическим моментом диполя или дипольным моментом.

Согласно принципу суперпозиции, напряженность E поля диполя в произвольной точке

E=E++E-

где E+ и E- - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами.

Напряженность поля на продолжении оси диполя в точке А. Напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

EA=E+-E-

Обозначив расстояние от точки А до середины оси диполя через r, на основании формулы для вакуума можно записать:

Согласно определению диполя, l/2<<r, поэтому

Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке В. Точка В равноудалена от зарядов, поэтому

где r' - расстояние от точки В до середины плеча диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор EB, получим

откуда

Вектор EB имеет направление, противоположное вектору электрического момента диполя (вектор p направлен от отрицательного заряда к положительному).

Задачу вычисления напряженности поля системы электрических зарядов, используя помощью принципа суперпозиции электростатических полей можно сильно облегчить, если применять открытую немецким ученым К. Гауссом (1777—1855) теорему, которая определяет поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

Из определения потока вектора напряженности сквозь замкнутую поверхность, поток вектора напряженности сквозь сферическую поверхность радиуса r, которая охватывает точечный заряд Q, находящийся в ее центре (рис. 1), равен

Этот результат справедлив для замкнутой поверхности произвольной формы. Действительно, если заключить сферу (рис. 1) в произвольную замкнутую поверхность, то каждая линия напряженности, которая пронизывает сферу, пройдет и сквозь эту поверхность.

 

В случае, если замкнутая поверхность любой формы охватывает заряд (рис. 2), то при пересечении любой линии напряженности с поверхностью она то входит в нее, то выходит из нее. При вычислении потока нечетное число пересечений в конечном счете сводится к одному пересечению, так как поток полагается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, которые входят в поверхность.

Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, которые входят в поверхность, равно числу линий напряженности, которые выходят из нее.

Формула выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на ε0. Эта теорема получена математически для векторного поля произвольной природы русским математиком М.В.Остроградским (1801—1862), а затем независимо от него применительно к электростатическому полю — К. Гауссом.

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью ρ=dQ/dV, которая различна в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, которая охватывает некоторый объем V,

Используя формулу, теорему Гаусса можно записать так:

Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость заряжена с постоянной поверхностной плотностью +σ (σ=dQ/dS - заряд, приходящийся на единицу поверхности). Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим цилиндр, основания которого параллельны линиям напряженности (cosα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания En совпадает с E), т.е. равен 2ES. Заряд, заключенный внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса, 2ES= σS/ε0, откуда

Из формулы вытекает, что E не зависит от длины цилиндра, т.е. напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскостью однородно.

Если в электростатическом поле точечного заряда Q из точки I в точку 2 вдоль произвольной траектории перемещается другой точечный заряд Q0, то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном перемещении dl равна

Так как dlcosα=dr, то

Работа при перемещении заряда Q0 из точки 1 в точку 2

не зависит от траектории перемещения, а определяется только положениями начальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциальным, а электростатические силы - консервативными.

Из формулы следует, что работа, совершаемая при перемещении электрического заряда во внешнем электростатическом поле по любому замкнутому пути L, равна нулю, т.е.

Если в качестве заряда, переносимого в электростатическом поле, взять единичный точечный положительный заряд, то элементарная работа сил поля на пути dl равна Edl=Eidl, где Ei=cosα - проекция вектора E на направление элементарного перемещения. Тогда формулу можно записать в виде

Данный интеграл называется циркуляцией вектора напряженности. Следовательно, циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю. Силовое поле, обладающее этим свойством, называется потенциальным. Из обращения в нуль циркуляции вектора E следует, что линии напряженности электростатического поля не могут быть замкнутыми, они начинаются и кончаются на зарядах (соответственно положительных и отрицательных) или же уходят в бесконечность.

Работа по перемещению единичного точечного заряда из одной точки поля в другую вдоль оси x при условии, что точки расположены бесконечно близко друг к другу и x­2-x1=dx, равна Exdx. Та же работа равна ϕ1- ϕ2=-d ϕ. Приравняв оба выражения, можем записать

Ex=

где символ частной производной подчеркивает, что дифференцирование производится только по x. Повторив аналогичные рассуждения для осей y и z, можем найти вектор E:

где i, j, k - единичные векторы координатных осей x,y,z.

Из определения градиента следует, что

т.е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус определяется тем, что вектор напряженности Е поля направлен в сторону убывания потенциала.

Для графического изображения потенциала электростатического поля, как и в случае поля тяготения, пользуются эквипотенциальными поверхностями - поверхностями, во всех точках которых потенциал ϕ имеет одно и то же значение.

Если поле создается точечным зарядом, то его потенциал ϕ=

Таким образом, эквипотенциальные поверхности в данном случае - концентрические сферы. С другой стороны, линии напряженности в случае точечного заряда - радиальные прямые. Следовательно, линии напряженности в случае точечного заряда перпендикулярны эквипотенциальным поверхностям.

Линии напряженности всегда нормальны к эквипотенциальным поверхностям. Действительно, все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю, т.е. электростатические силы, действующие на заряд, всегда направлены по нормалям к эквипотенциальным поверхностям. Следовательно, вектор E всегда нормален к эквипотенциальным поверхностям, а поэтому линии вектора Е ортогональны этим поверхностям.

Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы заря­дов можно провести бесчисленное множество. Однако их обычно проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверх­ностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности рас­положены гуще, напряженность поля больше.

Итак, зная расположение линий напряженности электростатического поля, можно построить эквипотенциальные поверхности и, наоборот, по известному расположению эквипотенциальных поверхностей можно определить в каждой точке поля модуль и направление напряженности поля. На рис. 133 для примера показан вид линий напряженности (штриховые линии) и эквипотенциальных поверхностей (сплошные линии) полей положительного точечного заряда (а) и заряженного металлического цилиндра, имеющего на одном конце выступ, а на другом — впадину (б).

Диэлектриками называются вещества, которые в обычных условиях практически не проводят электрический ток, их удельное сопротивление в 1010-1015 раз больше, чем у металлов. Согласно представлениям классической физики, в диэлектриках, в отличие от проводников, нет свободных носителей заряда, которые могли бы под действием электрического поля создавать ток проводимости.

К диэлектрикам относятся все газы; некоторые жидкости (дистиллированная вода, масла, бензол); твердые тела (стекло, фарфор, слюда). Термины "диэлектрик" и "диэлектрическая постоянная" были введены в науку в 1837 г. M. Фарадеем.

Диэлектрики, как и любые вещества, состоят из атомов и молекул. В целом молекулы нейтральны, тем не менее, они взаимодействуют с электрическим полем. Например, в случае, когда симметрия молекулы отлична от сферической, ее можно представить в виде электрического диполя. Электрический дипольный момент молекулы pi=ql, где q - суммарный заряд ядер или электронов; l - вектор, представляющий собой плечо эквивалентного диполя.

Молекулы, обладающие электрическим дипольным моментом, называют полярными. Полярным диэлектриком является вода; следующие вещества: CO; N2O; S2O; NH; HCl также имеют в своем составе полярные молекулы. В объеме вещества дипольные моменты молекул распределены по разным направлениям хаотическим образом, так что их сумма равна нулю.

Молекулы, у которых положения эквивалентного положительного и эквивалентного отрицательного заряда совпадают и, следовательно, дипольный момент каждой молекулы равен нулю (pi=0), называют неполярными. Такие вещества, как H­2, N2, O2, CO2 состоят из неполярных молекул.

Если диэлектрик внести в электрическое поле, то это поле и сам диэлектрик претерпевают существенные изменения.

Поляризацией диэлектрика называется процесс ориентации диполей или появления под воздействием внешнего электрического поля ориентированных по полю диполей.

Соответственно трем группам диэлектриков различают три вида поляризации:

электронная, или деформационная, поляризация диэлектрика с неполярными молекулами, заключающаяся в возникновении у атомов индуцированного дипольного момента за счет деформации электронных орбит;

ориентационная, или дипольная, поляризация диэлектрика с полярными молекулами, заключающаяся в ориентации имеющихся дипольных моментов молекул по полю. Естественно, что тепловое движение препятствует полной ориентации молекул, но в результате совместного действия обоих факторов (электрическое поле и тепловое движение) возникает преимущественная ориентация дипольных моментов молекул по полю. Эта ориентация тем сильнее, чем больше напряженность электрического поля и ниже температура;

ионная поляризация диэлектриков с ионными кристаллическими решетками, заключающаяся в смещении подрешетки положительных ионов вдоль поля, а отрицательных - против поля, приводящем к возникновению дипольных моментов.

Сегнетоэлектрики - диэлектрики, обладающие в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т.е. поляризованностью в отсутствие внешнего электрического поля.

-NaKC4H4O6*4H2O - сегнетова соль

-BaTiO - титанат бария

При отсутствии внешнего элемента поля сегнетоэлектрик представляет собой как бы мозаику из доменов-областей с различными направлениями поляризованности.

Точка Кюри - температура, выше которой необычные свойства сегнетоэлектрика исчезают и он становится обычным диэлектриком.

Конденсатор состоит из двух проводников (обкладок), разделенных диэлектриком. На емкость конденсатора не должны оказывать влияния окружающие тела, поэтому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) два коаксиальных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, возникающие на разных обкладках, являются равными по модулю разноименными зарядами. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (ϕ1- ϕ2) между его обкладками:

Конденсаторы характеризуются пробивным напряжением - разностью потенциалов между обкладками конденсатора, при которой происходит пробой - электрический разряд через слой диэлектрика в конденсаторе. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.

Параллельное соединение конденсаторов:

Последовательное соединение конденсаторов:

Энергия электростатического поля:

где V=Sd - объем конденсатора. Формула показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность E.

Объемная плотность энергии электростатического поля (энергия единицы объема)

Это выражение справедливо только для изотропного диэлектрика, для которого выполняется соотношение: P= .

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1892; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.