Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вторая производная функции , заданной параметрически




Теорема 21.2.(Г. Лейбниц). Если функции f и g на некотором промежутке имеют производные функции f(n) и g(n), n, то существует (fg)(n) и

(fg)(n) = = fg(n) + nf´g(n-1) + … + f(k)g(n-k) + … + nf(n-1)g´ + f(n)g. (1)

Для n=1 утверждение справедливо по теореме 19.8: вместе с f и g произведение fg также дифференцируемо и

(fg)´ = fg´ + f´g = C f(0)g(1) + C f(1)g(0).

Пусть утверждение теоремы справедливо для n, а функции f и g (n+1)-кратно дифференцируемы на рассматриваемом промежутке. Тогда эти функции вместе со своим произведением n-кратно дифференцируемы, и для него справедлива формула (1). Так как в каждом члене правой части этой формулы функции f(k) и g(n-k) дифференцируемы, то по теоремам 19.7, 19.8 функция (fg)(n) дифференцируема, причем (fg)(n+1) = ((fg)(n))´ = = .

Но = и, принимая также во внимание свойства биномиальных коэффициентов: , получаем

(fg)(n+1) = + + = , так что формула (1) верна, если заменить n на n+ 1 и теорема доказана.

Рассмотрим уравнение (2)

Где , − дважды дифференцируемые функции на некотором промежутке ; пусть, кроме того, функция строго возрастает (или убывает) на и ни в одной точке этого промежутка не равна 0. В пункте 20.7 доказано, что в этом случае уравнения (2) задают функцию , и производная этой функции равна

 

Бывает также, что производные по параметру обозначают так: , . Тогда формула (3) принимает вид: . Найдём вторую производную функции :

 

5.Дифференциалы высших порядков.

Однородную линейную функцию называют линейной формой.

Напомним, что если функция дифференцируема в точке , то

дифференциалом в x называют линейную форму .

Аналогично, если дифференцируема дважды в точке ,

то ее вторым дифференциалом называют квадратичную форму .

Вообще, n-ым дифференциалом в точке x будет n-ичная

форма (в предположении, что существует).

Для n-го дифференциала в точке x используют обозначение или, более

строго .

Таким образом, по определению,

= для всех Î . (2)

Согласно этому определению, есть n-я степень функции и

потому используют обозначение . Тогда (2) примет вид

для всех Î , или равенства

. (3)

Форма (2) записи n-го дифференциала не инвариантна

уже при n=2. Действительно, подставляя вместо дифференцируемую

функцию в левую часть формулы (2) (при n=2), получим

= (4)

а в результате такой же подстановки в правую часть, имеем

.(5)

Правые части формул (5) и (4) отличаются слагаемым .

Вообще говоря, это слагаемое не равно нулю. Однако если - линейная функция,

то и, вообще, для любого имеет место равенство ,

откуда следует, что формула (3) будет верна и для линейной функции .

 

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 617; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.