Для построения СДНФ обратимся к значениям «1» в столбце «Итог». Каждому значению «1» сопоставим одну ПЭК по следующему правилу: переменная ( или ) в ПЭК входит сама, если значение этой переменной в этой строке «1» и её отрицание, если значение этой переменной в этой строке «0». Имеем:
;
;
;
;
;
.
Следовательно,
.
– СДНФ – равносильная данной формуле.
Для построения СКДНФ обратимся к значениям «0» в столбце «Итог». Каждому значению «0» сопоставим одну ПЭД по следующему правилу: переменная ( или ) в ПЭК входит сама, если значение этой переменной в этой строке «0» и её отрицание, если значение этой переменной в этой строке «1». Имеем:
;
;
Следовательно,
– СКНФ – равносильная данной формуле.
Ответ:
– СДНФ;
– СКНФ.
Задание № 7. Для данной формулы алгебры высказываний построить многочлен Жегалкина.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление