Если при и , то разность представляет собой неопределенность . Чтобы раскрыть такую неопределенность, надо привести её к виду или .
Вычислить предел .
Умножим и разделим на сопряженное выражение , тогда
Здесь старшая степень - первая, поэтому
Контрольные варианты к задаче 17
Вычислить пределы функции:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Две бесконечно малые функции при или называются эквивалентными, если предел их отношения равен единице. Эквивалентность бесконечно малых функций записывается в виде ~ .
Таким образом, если , то ~ .
Таблица эквивалентных бесконечно малых функций
~ .
~ .
~
~ .
~ .
~ .
~ .
Теорема. Предел отношения двух бесконечно малых не изменится, если одну или обе бесконечно малые заменить им эквивалентными, т. е. если ~ и ~ , то
Заметим, что с помощью эквивалентных бесконечно малых раскрывают неопределенность
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление