Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Устойчивость разностной схемы




Аппроксимация с порядком.

Сходимость разностной схемы с порядком.

Решение сходится к с порядком , если .

.

Пусть задача имеет единственное решение.

Пусть ( - невязка).

Разностная задача аппроксимирует дифференциальную задачу на решении

с порядком , если .

Пример. Рассмотрим схему Эйлера для задачи .

Разностная задача , ,

. Поэтому

= . То есть, , следовательно, схема Эйлера дает аппроксимацию первого порядка.

 

Замечание. Ошибку аппроксимации можно оценить по правилу Рунге, решая дифференциальное уравнение с шагом , а затем с шагом и сравнивая решения: , где - порядок аппроксимации.

 

Разностная схема называется устойчивой, если разностная задача имеет единственное решение такое, что .

Другими словами, при малых возмущениях мало возмущается .

 

Теорема. Пусть разностная схема аппроксимирует дифференциальную задачу на решении с порядком и устойчива. Тогда решение разностной задачи сходится к с порядком , причем . Здесь - константа аппроксимации, С – константа устойчивости.

Доказательство. Пусть , тогда по единственности решения (определение устойчивости) и определению аппроксимации . Тогда

(при имеем ).

 

 

Содержание.

Лекция 1 Неопределенный интеграл, таблица интегралов. 2

 

Лекция 2. Методы интегрирования и таблица интегралов. 4

 

Лекция 3. Интегрирование рациональных функций. 8

 

Лекция 4. Интегрирование иррациональных и 14

тригонометрических функций.

 

Лекция 5. Определенный интеграл. 18

 

Лекция 6. Формула Ньютона – Лейбница. 22

 

Лекции 7, 8 Несобственные интегралы. 25

 

Лекции 9-10. Приложения определенного интеграла. 32

 

Лекция 11. Дифференциальные уравнения. 37

 

Лекция 12. Основные типы дифференциальных уравнений 39

первого порядка.

 

Лекция 13. Геометрическая интерпретация дифференциальных 47

уравнений 1 порядка, изоклины. Особые точки и особые

решения.

 

Лекция 14. Дифференциальные уравнения высших порядков. 50

 

Лекции 15–16. Линейные дифференциальные уравнения 53

n –ого порядка с переменными коэффициентами.

 

Лекции 17-18. Линейные дифференциальные уравнения с 61

постоянными коэффициентами.

 

Лекции 19-20. Нормальные системы дифференциальных уравнений. 68

 

Лекция 21. Системы линейных дифференциальных уравнений. 76

 

Лекция 22. Однородные системы линейных дифференциальных 82 уравнений с постоянными коэффициентами.

Лекции 23-24. Устойчивость движения, классификация точек покоя, 87

теоремы Ляпунова.

 

Лекция 25. Приближенное вычисление интеграла. 95

 

Лекция 26. Обзор численных методов решения задачи Коши 98




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 720; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.