Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сходимость, устойчивость разностных схем, порядок точности методов




.

Методы Адамса.

Идея методов Адамса – использовать не промежуточные вычисления значений правой части дифференциального уравнения внутри отрезка , а значения правой части на предыдущих шагах (сделать метод методом «с памятью»).

В формуле заменим интерполяционным полиномом Ньютона .

 

Явные методы Адамса (Адамса – Башфорта).

Возьмем , но интеграл будем брать по предыдущему отрезку . Тогда

Здесь - конечная разность - го порядка:

Подставляя эти разности, получим

(k – шаговый явный метод Адамса – Башфорта)

Пример. Получен явный метод Адамса – Башфорта второго порядка ( двухшаговый )

Более точен метод Адамса – Башфорта четвертого порядка:

Заметим, если задано (в задаче Коши начальное условие задается), то для того, чтобы начал работать метод Адамса 4 порядка, нужно вычислить еще значения (каким-либо другим методом) . Тогда из системы формул Адамса Башфорта, выписанных для , вычисляются значения правых частей , необходимые для того, чтобы метод начал работать. Затем уже по этим значениям по формуле метода определяются .

Эта процедура называется «разгоном метода» и является обязательной в методах Адамса.

 

Неявные методы Адамса (Адамса – Мултона).

Возьмем , интеграл будем брать по отрезку . Тогда

Здесь - конечная разность - го порядка:

Подставляя эти разности, получим

(k – шаговый явный метод Адамса –Мултона)

Формально он записан в том же виде, что и метод Адамса – Башфорта, но разница существенна: в методе Адамса – Мултона в левой части уравнения присутствует , а в правой части присутствует . Поэтому приходится еще решать систему уравнений для явного определения .

Пример. . Поэтому имеем формулу

метода Адамса – Мултона второго порядка.

Более точен метод Адамса – Мултона четвертого порядка

.

Эти методы также требуют разгона.

 

Обобщением методов Адамса являются линейные многошаговые методы

Если , то метод – явный, если , то метод – неявный.

Есть методы, сочетающие явные и неявные этапы – методы. Таковы, например, методы типа предиктор – корректор (предиктор P – предсказатель – явный метод, корректор С – неявный метод). Эти методы содержат обычно и этапы вычисления функции Е. Распространены методы РЕСЕ и РЕС.

Рассмотрим в качестве метода Р метод Адамса – Башфорта 2 го порядка, а в качестве метода С – метод Адамса – Мултона 2 го порядка.

Схема метода может быть записана в виде.

Р .

Е

С

Е

Метод Р «предсказывает», прогнозирует , вычисляется значение правой части, которое используется в методе С – «корректоре» для коррекции приближения , затем вычисляется более точное значение правой части, которое вновь используется в методе Р.

 

 

Вообще-то это – тема отдельного курса, но нельзя говорить о методах решения дифференциальных уравнений и не сказать хотя бы несколько слов о сходимости численных алгоритмов, устойчивости вычислительных схем и точности методов.

Рассмотрим дифференциальное уравнение , равномерную сетку на отрезке интегрирования .

Рассмотрим сеточную функцию - правую часть уравнения, определенную на сетке .

Введем аппроксимации производной:

, , .

Задача Коши (дифференциальная задача) заменяется разностной задачей (разностной схемой)

или .

Разностная схема отличается от дифференциального уравнения тем, что функции заменены сеточными, производные заменены их аппроксимациями.

- решение разностной задачи, - решение дифференциальной задачи, - сеточная функция, построенная по .




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 4272; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.