КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 26. Обзор численных методов решения задачи Коши для обыкновенных дифференциальных уравнений
Формула Симпсона. Аппроксимируем функцию на отрезке разбиения квадратичной функцией так, чтобы
Лемма. . Докажем лемму для . Сделаем замену . Тогда формула сведется к следующей: . Левая часть Правая часть . Лемма доказана. Разобьем теперь отрезок интегрирования на 2n частей, (). Применим лемму к отрезкам , ,..., получим формулу Симпсона . Можно показать, что формула Симпсона – формула четвертого порядка точности, ее погрешность не превосходит , где . Это означает, что при интегрировании многочлена третьей степени формула Симпсона точна, ее погрешность равна нулю. Пример. Вычислить приближенно I = с шагом . 1 формула прямоугольников , 2 формула прямоугольников , 3 формула прямоугольников , Формула трапеций . Формула Симпсона
Будем рассматривать схемы численных методов для уравнения первого порядка . Это – самый простой случай, но к нему по аналогии сводятся схемы методов для системы дифференциальных уравнений и для дифференциального уравнения n- го порядка.
Дата добавления: 2015-04-24; Просмотров: 645; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |