КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
М. Н. Полякова, А. М. Вербенец 5 страница
1) каждое из множеств К\, К2,... К„ непустое, т. е. Kj*0, где / = 1, 2, 3,.., я; 2) эти множества попарно не пересекаются, т. е. Kji~\Kj = 0 для всяких fcj и 1, 2, 3,.., п; 3) их объединение образует множество М, т. е. К{иК2и...К„ = М. Если хотя бы одно из условий (1)—(3) не выполняется, то система множества К\, К2,.., К„ не является разбиением множества М на классы. Например, система множества остроугольных, прямоугольных и двупрямоугольных треугольников не образует разбиение множества всех треугольников, так как множество двупрямоугольных треугольников, содержащих по два прямых угла, пусто, т.е. не выполняется условие (1). Система множеств остроугольных, прямоугольных и равнобедренных треугольников не образует разбиение множества всех треугольников, так как не выполняется условие (2) — множества прямоугольных и равнобедренных треугольников пересекаются (существуют прямоугольные равнобедренные треугольники). Система множества остроугольных и прямоугольных треугольников не образует разбиения множества треугольников, так как не выполняется условие (3) — объединение множеств остроугольных и прямоугольных треугольников не образует множество всех треугольников. Отношения между двумя множествами С целью уточнения вернемся к вопросу об отношении включения одного множества в другое. Вообще говоря, в математике различаются два вида включения: в широком смысле (нестрогое включение) и в узком смысле (строгое включение). Первое обозначается знаком с. Запись «AczB» означает, что все элементы Л принадлежат В. При этом возможны два случая: 1) все элементы В принадлежат А, т. е. AczB и ВсА. В этом случае множества An В состоят из одних и тех же элементов и называются равными, что обозначается так: «А=В». Например, если А — множество всех больших блоков, а В — множество всех блоков, которые не являются малыми, то А=В. Как видно, равные множества по существу совпадают (при задании их перечислением элементов они могут отличаться лишь порядком перечисления, который несуществен); 2) не все элементы В принадлежат А, т. е. AciB, но BczA. В таком случае говорят также, что А строго включается в В — или А является собственной (или правильной) частью В. Это отношение в математической литературе обычно обозначается символом «с» {A(zB). В предматематической подготовке дошкольников встречается лишь строгое включение, собственная часть множества. В играх с обручами моделируются и другие отношения, в которых могут находиться два множества. Так, например, множества красных (А) и не красных (Л) блоков не имеют ни одного общего элемента, т. е. их пересечение пусто (АглА = 0). Такие два множества, как мы уже знаем, называются непересекающимися (в литературе встречается и термин «дизъюнктные» множества). Множества красных (А) и квадратных (В) блоков имеют общие элементы (красные квадраты), т. е. их пересечение непусто (АглВф0), причем ни одно из этих множеств не включается в другое, т. е. не является подмножеством другого. Такие два множества называются пересекающимися. Выявление правильных отношений между множествами окружающих нас предметов — составная часть формирования и развития представлений дошкольников об окружающем мире. Выработка у дошкольников простейших представлений классификации окружающих предметов является основой для формирования в дальнейшем математического мышления, связанного с моделированием и исследованием различных математических конструкций, способствует повышению алгоритмической культуры учащихся. 2.2. Отношения
Бинарные отношения Под бинарным отношением понимают отношение между двумя предметами. Дальше, говоря «отношение», мы будем иметь в виду именно бинарное отношение. Выясним, что интуитивно понимают под отношением и как это понятие можно описать математически. Из курса школьной математики известны многочисленные примеры отношений: • между числами: равно, не равно, меньше, больше, не меньше, не больше, делит, делится на; • между точками прямой: предшествует, следует за; • между прямыми: параллельны, пересекаются, перпендикулярны, скрещиваются; • между прямой и плоскостью: параллельны, пересекаются, перпендикулярны; • между плоскостями: параллельны, пересекаются, перпендикулярны; • между геометрическими фигурами: равно, подобно и др. Это, разумеется, далеко не полный перечень встречающихся в школьной математике отношений. Примеры бинарных отношений встречаются не только в математике, но и всюду в жизни, вокруг нас. Родственные и другие отношения между людьми (быть отцом, дедушкой, матерью, бабушкой, братом, сестрой, другом, ровесником; старше, моложе, выше, ниже и др.) выступают как бинарные отношения. Отношения между событиями во времени (раньше, позже, одновременно), между предметами по их расположению в пространстве (выше, ниже, левее, правее, севернее, южнее и др.) также выступают как бинарные отношения. Всегда, когда речь идет о некотором отношении, имеются в виду два множества А я В; при этом некоторые элементы множества А находятся в данном отношении с некоторыми элементами множества В или того же множества А. Таким образом, всякое отношение между элементами множеств А и В (или между элементами множества А) порождает множество пар, первые компоненты которых принадлежат А, вторые — В (или тоже А), т. е. порождает подмножество АхВ (или АхА), причем такое, что элементы каждой пары и только они находятся в данном отношении. Всякое отношение между элементами двух множеств А и В полностью характеризуется тремя множествами: А и В, между элементами которых установлено отношение, и некоторым множеством пар Р — подмножеством АхВ, т. е. декартовым произведением. Один из путей определения математического понятия отношения и состоит в отождествлении этого понятия с указанной тройкой множеств. Отношением между элементами непустых множеств А и В называется тройка множеств р=(Р, А, В), где P<zAxB. Множество пар Р называется графиком отношения р. Об элементах пары (х, у), принадлежащей графику Р, говорят, что они находятся в отношении р, и записывают это так: «хру». Таким образом, записи «(х, у)е Р» или «хру» равносильны. Если В—А, то р=(Р, А, А) называется отношением между элементами множества А. Свойства отношений 1. Отношение р на множестве А является рефлексивным, если всякий элемент этого множества находится в отношении р с самим собой. Если же каждый элемент множества А не находится в этом отношении с самим собой, отношение обладает свойством антирефлексивности и называется антирефлексивным. Среди уже перечисленных нами отношений рефлексивными являются: равно, не меньше, не больше, делит, делится на, равенство и подобие фигур; антирефлексивными являются отношения: неравно, меньше, больше между числами; предшествует, следует за между точками прямой. Отношение быть ровесником между людьми является рефлексивным, отношение же быть отцом, быть матерью, выше, старше, моложе — антирефлексивными. Отношение быть другом не является ни рефлексивным, ни антирефлексивным (бывают случаи, когда человек сам себе друг, и случаи, когда человек сам себе недруг). 2. Рассмотрим свойство: если а-b, то Ь=а, т. е. если пара (а, Ь) Таким свойством обладает, например, отношение быть ровесником: если х ровеснику, то у ровесник х. Это отношение обладает свойством симметричности и называется симметричным. Не является симметричным, например, отношение старше: если х старше у, то неверно, что у старше х. Подобные отношения обладают свойством асимметричности и называются асимметричными. 3. Несложно установить истинность следующих утверждений: если х=у и ущ, то x=z; если х ровесник у и у ровесник z, то х ровесник z; если х старше у и у старше z, то х старше z; если а\\Ь и Ь\\с, то а\\с. Однако если х — отец у и у — отец z, то z не есть отец z (он его дедушка); если х — друг у, а у — друг z, то вообще не известно, является ли х другом z. Свойство отношения р—(Р, А, А), состоящее в том, что из хру и ypz следует xpz для любых х, y,z^A, называется транзитивностью, а отношение р, обладающее этим свойством, — транзитивным. Свойство отношения р, состоящее в том, что из хру и ypz следует —xpz для любых х, у, zЈ А, называется антитранзитивностью, а отношение р, обладающее этим свойством, — антитранзитивным. Так, отношения меньше, равно, быть ровесником, старше, параллельно являются транзитивными. Отношение быть отцом является антитранзитивным, а отношение быть другом не является ни транзитивным, ни антитранзитивным. Отношение эквивалентности Выделим теперь класс отношений, играющих особую роль в разбиении множеств предметов на классы, т. е. в классификации множеств. Среди рассмотренных выше примеров отношений имеются такие, которые являются рефлексивными, симметричными и транзитивными одновременно. К ним относятся отношения равенства чисел и геометрических фигур, подобия фигур, отношение быть ровесником. Эти и другие подобные им, т. е. обладающие такими же свойствами, отношения принадлежат важному классу отношений эквивалентности, находящих широкое применение и использование, в том числе в курсе математики общеобразовательной школы. Всякое рефлексивное, симметричное и транзитивное отношение, установленное в некотором множестве А, называется отношением эквивалентности. Если между элементами некоторого множества введено или установлено отношение эквивалентности, то этим самым порождается разбиение данного множества на классы таким образом, что любые два элемента, принадлежащие одному классу разбиения, находятся в данном отношении (иначе: эквивалентны по этому отношению), любые же два элемента, принадлежащие различным классам, не находятся в этом отношении (иначе: не эквивалентны по этому отношению). Такое разбиение множества на классы обычно называют разбиением множества на классы эквивалентности. Разбиение множества блоков (или фигур) на классы эквивалентности можно смоделировать с помощью следующей игры с тремя обручами. В множестве всех блоков введем отношение иметь один цвет (или быть одного цвета). Нетрудно убедиться в том, что это множества всех блоков на классы эквивалентности по отношению быть одного цвета (области (1), (2), (3), (4) оказываются пустыми, так как нет трехцветного или двухцветного блока, область (8) пуста, так как блоков другого цвета, кроме красного, синего или желтого, нет). Нетрудно убедиться в том, что удовлетворяются условия (1)—(3) правильного разбиения (см. 2.1): 1) ни один из классов (красных, синих, желтых) блоков не пуст; 2) эти классы попарно не пересекаются; 3) их объединение равно множеству Мвсех блоков. Таким же путем, т. е. с помощью отношения быть одного цвета, формируется и само представление о цвете как о классе, объединяющем все предметы одного цвета, скажем все красные предметы. Аналогично формируется и представление об определенной форме предметов. С помощью отношения иметь одну форму мы получаем разбиение всех блоков (или фигур) на четыре класса эквивалентности такое, что любые два блока (или две фигуры), принадлежащие одному классу, обладают одной и той же формой, любые же два блока (или две фигуры) различных классов обладают различной формой. Сама форма выступает здесь как класс эквивалентности. Так, впоследствии, например, формируются представления о круге, квадрате, треугольнике, прямоугольнике и других геометрических фигурах как на плоскости, так и в пространстве. Эти примеры показывают, с одной стороны, что отношения эквивалентности являются базой для формирования новых понятий и для классифицирующей деятельности, с другой — что рассмотренные выше (2.1) дидактические игры с обручами обучают этой деятельности. Отношение порядка Среди рассмотренных выше примеров отношений имеются такие, как меньше, больше между числами, предшествует, следует за между точками прямой; старше, моложе между людьми. Эти отношения являются антирефлексивными, асимметричными и транзитивными. Всякое антирефлексивное, антисимметричное и транзитивное отношение в некотором множестве А называется отношением порядка1.
2.3. Числа Возникновение понятия натурального числа
Теоретические основы формирования элементарных математических представлений у дошкольников включают детальное изучение лишь системы натуральных чисел. Поэтому, говоря здесь «числа», мы имеем в виду натуральные числа. К построению математических моделей явлений, основанному на отвлечении от всех свойств предметов, кроме их количественных отношений и пространственных форм, человечество прибегало с первых шагов изучения окружающего мира. Одним из первых достижений на этом пути было возникновение и формирование понятия натурального числа. Оно появилось, по-видимому, на довольно позднем этапе развития мышления и предполагало наличие способности к созданию абстрактных понятий и оперированию ими. Процесс формирования понятия числа был сложным и длительным. На самом раннем этапе устанавливалась равночислен-ность различных множеств, общее же свойство равночисленных множеств еще не отделялось от конкретной природы сравниваемых множеств. Например, знали, что два рыболова поймали поровну рыб, но не выражали этого каким-либо числом. В дальнейшем практика экономических и социальных взаимоотношений привела к необходимости выражать численность одних множеств уже через численность других множеств, т. е. общее свойство равночисленное™ стало осознаваться как нечто отличное от конкретной природы самого множества, его элементов. Однако в качестве эталонов выступали еще различные множества, состоящие из подручных предметов — эквивалентов равночисленности множеств предметов. Еще позже определенное множество, например пальцы на руках и ногах, начали выступать в качестве своеобразного единственного эталона количества, что позволило выделить общее свойство численности, отличное от всех особенных свойств множеств. Впоследствии общее свойство всех равночисленных множеств абстрагировалось от самих множеств и выступило в «чистом виде», т. е. как абстрактное понятие натурального числа. Далее в качестве эталона численности уже выступают сами натуральные числа, когда люди говорят не «рука яблок», а «пять яблок» (интересно, что в слове «пять» сохранилось воспоминание о «пясти», т. е. о ладони). И наконец, происходит отвлечение от реально существующих ограничений счета и возникает понятие о сколь угодно больших числах. Возникает абстракция бесконечного множества натуральных чисел. Объектом научного анализа становятся свойства элементов самого этого множества, в отвлечении от тех предметов, счет которых привел к созданию понятия числа. Возникает теория, описывающая систему чисел с ее свойствами и закономерностями. Как будет показано дальше, процесс формирования представлений дошкольников о числе в известном смысле в общих чертах повторяет основные этапы исторического развития этого понятия. В математике известны различные способы построения теории натуральных чисел. Мы рассмотрим лишь основные идеи двух теорий натуральных чисел, количественной и порядковой, находящие отражение в формировании представлений о числе, счете и арифметических операциях. Основные идеи количественной теории натуральных чисел В количественной теории натуральное число с самого начала воспринимается как число элементов (мощность, численность) конечного множества. Рассмотрим всевозможные конечные множества (говорят «класс, или семейство, множеств») и установим для них отношение эквивалентности следующим образом: два множества А и В будем называть эквивалентными (обозначается это через А~В), если между элементами этих множеств можно установить взаимно однозначное соответствие. Установленное таким образом отношение множеств является отношением типа эквивалентности, т. е. оно рефлексивно, симметрично и транзитивно. Для любых множеств А, В, С: а) А~А; б) если А~В, то В~А; в) если А~В и В~С, то А~С. Поэтому введенное отношение порождает разбиение данного семейства множеств на классы эквивалентности так, что любые два множества одного класса эквивалентны, а любые два множества различных классов неэквивалентны. Эквивалентные множества не совпадают полностью, всеми своими свойствами: множество пальцев человеческой руки и множество, состоящее из пяти столов, различные, но эквивалентные множества. Каждый класс эквивалентности характеризуется мощностью, т. е. любые два множества одного класса равномощны (имеют одинаковую мощность). Так как мы имеем дело лишь с конечными множествами, то равномощность означает равночисленность. Мощность, или класс, равночисленных конечных множеств и называют натуральным числом. Таким образом, каждому конечному множеству Л приписывают в качестве характеристики натуральное число т(А), определяющее его принадлежность определенному классу эквивалентности. При этом множествам, принадлежащим одному классу эквивалентности, приписывается одно и то же натуральное число: если А~В, то т(А)=т(В); множествам, принадлежащим различным классам эквивалентности,— различные натуральные числа: если А~В, то т (А)^т(В). Так как А и В — конечные множества, то натуральные числа т(А) и т(В) обозначают числа элементов (численность) этих множеств. В основе такой концепции натурального числа лежит абстракция отождествления: отношение эквивалентности множеств отождествляет множества, принадлежащие одному классу эквивалентности по их численности. В результате этого отождествления от множеств, принадлежащих одному классу эквивалентности, абстрагируется их общее свойство, характеризующее этот класс, в виде самостоятельного понятия — натурального числа. Название «количественная теория» связано с тем, что в этой теории натуральное число обозначает количество элементов множества. Основные идеи порядковой теории натуральных чисел В конце XIX в. была построена порядковая теория натуральных чисел, которая обычно связывается с именем итальянского математика Джузеппе Пеано (1858—1932), построившего эту теорию на аксиоматической основе. Весьма развитый в математике аксиоматический подход к построению теорий состоит в следующем: а) выделяются некоторые исходные, неопределяемые через другие понятия; все остальные понятия теории определяются через ранее уже определенные; б) выделяются некоторые исходные предложения, или аксиомы, истинность которых принимается без доказательства; все остальные предложения теории — теоремы — логически выводятся или доказываются с использованием введенных понятий, ранее доказанных фактов, теорем. Отметим, что аксиоматический подход применяется для построения теории, о которой уже имеются определенные, сформированные интуитивные представления. Иначе говоря, осуществляется аксиоматизация уже имеющейся «предматематической теории». Подход к построению теории натуральных чисел, берущий начало от Пеано, представляет собой определенный способ математизации интуитивного представления о натуральном ряде. Математизация этого интуитивного понятия приводит к определению натурального ряда как некоторой структуры (T, 1,'), состоящей из: а) множества N, элементы которого называются натуральными числами; б) выделенного в этом множестве элемента, обозначаемого знаком 1 и называемого единицей; в) определенного в множестве ТУотношения «непосредственно следует за» (число, непосредственно следующее за числом*, обозначим черезх\ т. е. если у непосредственно следует за х, то у=х'; у! — «сосед справа» для х). Натуральный ряд обладает следующими интуитивно ясными свойствами (принятыми Пеано в качестве аксиом, характеризующих эту структуру). I. Единица непосредственно не следует ни за каким натуральным числом, т. е. не является «правым соседом» никакого другого натурального числа, это «первое» натуральное число. П. Для любого натурального числа существует одно и только одно непосредственно следующее за ним натуральное число, т. е. любое натуральное число имеет только одного «правого соседа». III. Любое натуральное число непосредственно следует не более чем за одним натуральным числом, т. е. единица не следует ни за каким, всякое другое натуральное число — точно за одним. Всякое натуральное число, кроме единицы, является «правым соседом» одного и только одного натурального числа, его «левого соседа». I. Если какое-нибудь множество М натуральных чисел (Л/c/) содержит 1 и вместе с некоторым натуральным числом х содержит и натуральное число х1', непосредственно следующее за х, то это множество совпадает с множеством всех натуральных чисел (M=N). Предложение I, хотя по своему содержанию более сложно, чем первые три, также выражает достаточно простое свойство: с помощью последовательного прибавления единицы, начиная с единицы, можно получить все натуральные числа. Всякий раз, когда мы доходим до некоторого числа х, допускается возможность написания непосредственно следующего за ним числа х?. Натуральный ряд в описанном представлении мыслится потенциально бесконечным. С этой точки зрения процесс его образования незавершаем, предполагается лишь, что после каждого шага процесса мы располагаем возможностью осуществления следующего шага. Свойства I—I характеризуют структуру «натуральный ряд» только с точки зрения отношения ', названного «непосредственно следует за». Но это построение можно дополнить свойствами, характеризующими операции сложения и умножения в множестве N. Расширим систему свойств I—I таким образом, чтобы получить характеристику структуры (N, 1,', +, •). Знак + обозначает операцию «сложение», сопоставляющую с каждой парой (х, у) натуральных чисел натуральное число х+у, называемое их суммой и обладающее следующими свойствами: т. е. сумма любого натурального числа х с числом 1 равна непосредственно следующему за х числу хЛ I. Х+у'=(х+у)', т. е. сумма любого числа х с числом у', непосредственно следующим за любым числом у, равна числу, непосредственно следующему за суммой х+у. Знак • обозначает операцию умножения, сопоставляющую с каждой парой (х, у) натуральных чисел натуральное число х»у, называемое их произведением и обладающее следующими двумя свойствами: II.x»l=x, т. е. произведение любого натурального числа х и числа 1 равно числу х (умножение какого-нибудь числа на единицу не меняет это число). III. х»(У)=(х»у)+х, т. е. произведение числа х на число, непосредственно следующее за числом у, равно произведению чисел х и у, сложенному с числом х. Из свойств I—III выводятся все остальные свойства порядка и операций сложения и умножения натуральных чисел. Покажем в качестве примера, как, исходя из перечисленных свойств, можно получить таблицу сложения. Будем исходить из знания того, что непосредственно следующее число за каждым однозначным числом уже получено: Г=2; 2'=3; 3'=4; 4'=5; 5'=6; 6'=7; 7'=8; 8'=9; 9'=10. Исходя из свойства, получаем таблицу «прибавления единицы»: 1 + 1=1'=2; 2+1=2'=3; 3+1=3'=4;
9+1=9'= 10. Теперь, зная таблицу и используя свойство I, можем вывести, например, чему равно 2+2: 2+2=2+1'=(2+1)'=3'=4. Аналогично 3+2=3+Г=(3+1)'=4'=5 и т. д. Как видно, в описанном построении теории натуральных чисел основную роль играет операция (функция) прибавления единицы
/(х)=х+1, сопоставляющая с каждым числом х непосредственно следующее за ним число х+1 (илихО- Эта идея используется в обучении счету маленьких детей. 2.4. Геометрические фигуры
Формирование понятия геометрической фигуры Исторически понятие геометрической фигуры, так же как понятие натурального числа, было одним из исходных понятий математики. Как и натуральные числа, понятие геометрической фигуры образовалось с помощью абстракции отождествления, в основе которой лежит некоторое отношение эквивалентности. В данном случае таким отношением является сходство, подобие предметов по их форме, с помощью которого множество предметов разбивается на классы эквивалентности так, что любые два предмета одного класса имеют одинаковую форму, а любые два предмета различных классов — различные формы. Абстрагируясь при этом от других свойств предметов (цвета, величины, материала, из которого они сделаны, назначения и т. д.), мы получаем самостоятельное понятие геометрической фигуры. В математике поступают и так: класс подобных по форме предметов определяется любым принадлежащим ему предметом и называется формой. В связи с рассмотрением отношения эквивалентности нами был приведен пример классификации блоков по их форме. Решая эту задачу, дети получают классы квадратных, круглых, треугольных и прямоугольных блоков, затем каждый из этих классов, так же как и отдельные их представители, называется соответственно квадратом, кругом, треугольником, прямоугольником. В основе выделения этих понятий лежит отношение эквивалентности иметь одинаковую форму. В изучении геометрии, и в частности геометрических фигур, различают несколько уровней мышления. Первый, самый простейший уровень характеризуется тем, что геометрические фигуры рассматриваются как целые и различаются только по своей форме. Если показать дошкольнику круг, квадрат, прямоугольник и сообщить ему соответствующие названия, то после некоторого времени он сможет безошибочно распознавать эти фигуры исключительно по их форме (причем еще не анализированной), не отличая квадрат от прямоугольника. На этом уровне квадрат противопоставляется прямоугольнику. На следующем, втором уровне проводится анализ воспринимаемых форм, в результате которого выявляются их свойства. Геометрические фигуры выступают уже как носители своих свойств и распознаются по этим свойствам, свойства фигур ло-гически еще не упорядочены, они устанавливаются эмпирическим путем. Сами фигуры также не упорядочены, так как они только описываются, но не определяются. Этот уровень мышления в области геометрии еще не включает структуру логического следования. Описанные выше два уровня вполне доступны детям 4—6 лет, и это обстоятельство следует учитывать при составлении программ обучения и разработке методики. Из чего состоит геометрическая фигура? Всякая геометрическая фигура подразумевается состоящей из точек, т.е. всякая геометрическая фигура представляет собой множество точек, в том числе одну точку тоже принято считать геометрической фигурой. На предматематическом уровне дети знакомятся с простейшими, но наиболее распространенными геометрическими фигурами: различными линиями, формами блоков — квадратом, кругом, треугольником, а также пятиугольником, шестиугольником. Строгих определений, разумеется, на этом уровне не дается. Виды геометрических фигур Будем рассматривать далее лишь те виды простейших геометрических фигур, с которыми приходится иметь дело в процессе обучения дошкольников. Все геометрические фигуры делятся на плоские и пространственные. Так, например, квадрат, круг — плоские фигуры; куб, шар — пространственные. Начнем с рассмотрения линий. Под линией будем иметь в виду плоскую линию — линию, все точки которой лежат на некоторой плоскости, а сама линия есть подмножество точек плоскости. Прямую линию, или просто прямую, можно выделить среди других линий с помощью ее характеристических свойств, т. е. таких свойств, которыми обладает только прямая и никакие другие линии. На илл. 8 между деревом и домом проложено несколько тропинок. На геометрическом языке это означает: через две точки D и С проходит несколько линий. Прямая выделяется среди них тем, что это — линия кратчайшего расстояния. Еще одно характеристическое свойство прямой: через две точки D и С можно провести много различных линий, прямых — только одну, т. е. через две точки проходит одна и только одна прямая. Линии бывают замкнутыми и незамкнутыми. Например, прямая — незамкнутая линия, окружность — замкнутая. По отношению к прямой две точки могут находиться «по одну сторону» от нее или «по разные стороны». Например, если дом и дерево находятся по одну сторону от речки, можно дойти от дома до дерева или обратно, не проходя через мост. Если же они находятся по разным сторонам от реки, то дойти от дома до сада или обратно, не проходя через мост, нельзя. На геометрическом языке эта ситуация описывается следующим образом. Две точки А и В находятся по одну сторону от прямой /, если отрезок, соединяющий эти точки, не пересекает прямую / (илл. 9). Первые представления о внутри и вне закрепляются в играх с обручами, когда дети встречаются со все усложняющимися ситуациями: определение блоков внутри и вне одного обруча, внутри одного и вне другого обруча, внутри всех трех обручей, внутри двух обручей и вне третьего и т. п. Поэтому перед решением задач, связанных с классификацией блоков или фигур в играх с обручами, необходимо выяснить, распознают ли дети внутреннюю и внешнюю области по отношению к каждому обручу.
Дата добавления: 2015-04-24; Просмотров: 565; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |