КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты воспользовавшись методом вращающегося вектора амплитуды (см. § 140). Построим векторные диаграммы этих колебаний (рис.203). Так как векторы a 1 и А 2 вращаются с одинаковой угловой скоростью w0, то разность фаз (j2-j1) между ними остается постоянной. Очевидно, что уравнение результирую-
щего колебания будет х=х 1 +х 2 =А cos(w0 t +j). (144.1) В выражении (144.1) амплитуда А и начальная фаза j соответственно задаются соотношениями Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (j2-j1) складываемых колебаний. Проанализируем выражение (144.2) в зависимости от разности фаз (j2-j1): 1) j2-j1=±2mp (m = 0, 1, 2,...), тогда A=A 1 +A 2, т.е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний; 2) j2-j1= ±(2m+1)p (m=0, 1, 2,...), тогда A = │A 1 -A 2 │, т.е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний. Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. В результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями. Пусть амплитуды складываемых колебаний равны А, а частоты равны w и w+Dw, причем Dw<<w. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю: Складывая эти выражения и учитывая, что во втором сомножителе Dw/2<<w, найдем Получившееся выражение есть произведение двух колебаний. Так как Dw<<w, то сомножитель, стоящий в скобках, почти не изменяется, когда сомножитель coswt совершит несколько полных колебаний. Поэтому результирующее колебание х можно рассматривать как гармоническое
с частотой w, амплитуда А б, которого изменяется по следующему периодическому закону: Частота изменения A б, в два раза больше частоты изменения косинуса (так как берется по модулю), т.е. частота биений равна разности частот складываемых колебаний: wб=Dw. Период биений Tб=2p/Dw. Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии дают график результирующего колебания (144.3), а огибающие их — график медленно меняющейся по уравнению (144.4) амплитуды. Определение частоты тона (звука определенной высоты (см. §158)) биений между эталонным и измеряемым колебаниями — наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д. Любые сложные периодические колебания s=f(t) можно представить в виде суперпозиции одновременно совершающихся гармонических колебаний с различными амплитудами, начальными фазами, а также частотами, кратными циклической частоте w0: Представление периодической функции в виде (144.5) связывают с понятием гармонического анализа сложного периодического колебания, или разложения Фурье. Члены ряда Фурье, определяющие гармонические колебания с частотами w0, 2w0, 3w0,..., называются первой (или основной), второй, третьей и т. д. гармониками сложного периодического колебания.
Дата добавления: 2015-04-24; Просмотров: 578; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |