Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гармонические колебания и их характеристики




Механические и электромагнитные колебания

Колебания и волны

Глава 18

Колебаниями называются движения или процессы, которые характеризуются опре­деленной повторяемостью во времени. Ко­лебательные процессы широко распро­странены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебатель­ном движении маятника изменяется ко­ордината его центра масс, в случае пере­менного тока колеблются напряжение и ток в цепи. Физическая природа колеба­ний может быть разной, поэтому различа­ют колебания механические, электромаг­нитные и др. Однако различные колеба­тельные процессы описываются одинако­выми характеристиками и одинаковыми уравнениями. Отсюда следует целесооб­разность единого подхода к изучению ко­лебаний различной физической природы. Например, единый подход к изучению ме­ханических и электромагнитных колеба­ний применялся английским физиком Д. У. Рэлеем (1842—1919), А. Г. Столето­вым, русским инженером-экспериментато­ром П.Н.Лебедевым (1866—1912). Боль­шой вклад в развитие теории колебаний внесли советский физик Л. И. Мандель­штам (1879- -1944) и его ученики.

Колебания называются свободными (или собственными), если они совершают­ся за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний явля­ются гармонические колебания — колеба­ния, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно но двум причинам: 1) колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому; 2) различные периоди­ческие процессы (процессы, повторяющие­ся через равные промежутки времени) можно представить как наложение гармо­нических колебаний. Гармонические коле­бания величины s описываются уравнени­ем типа.

s= A cos(w0t+j), (140.1)

где А - максимальное значение колеблю­щейся величины, называемое амплитудой колебаний, w0 круговая (циклическая) частотой, j- начальная фаза колебаний

в момент времени t=0, (w0t+j)— фаза колебаний в момент времени t. Так как косинус изменяется в пределах от +1 до -1, то s может, принимать значения от + А до - А.

Определенные состояния системы, совершающей гармонические колебания, по­вторяются через, промежуток времени Т, называемый периодом колебания, за кото­рый фаза колебания получает приращение 2p, т. е.

w0(t+T ) +j=(w0t +j)+2p,

откуда

T=2p/w0. (140.2)

 

 

Величина, обратная периоду коле­баний,

v=1/T, (140.3)

т. о. число полных колебаний, совершае­мых в единицу времени, называется часто­той колебаний. Сравнивая (140.2) и (140.3), получим

w0=2pv.

Единица частоты — герц (Гц):1Гц — частота периодического процесса, при ко­торой за 1 с совершается один цикл про­цесса.

Запишем первую и вторую производ­ные по времени от гармонически колеблю­щейся величины s (соответственно ско­рость и ускорение):

т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды ве­личин (140.4) и (140.5) соответственно равны А w0 и A w20. Фаза скорости (140.4) отличается от фазы величины (140.1) на π/2, а фаза ускорения (140.5) отличается от фазы величины (140.1) на p. Следова­тельно, в моменты времени, когда s=0,

ds/dt приобретает наибольшие значения;

когда же s достигает максимального отрицательного значения, то d2s/dt2 приобретает

наибольшее положительное значение (рис. 198).

Из выражения (140.5) следует диффе­ренциальное уравнение гармонических ко­лебаний

d2s/dt2+w20s=0 (140.6)

(где учтено, что s=A cos(w0t+j)). Решением этого уравнения является выражение (140.1).

Гармонические колебания изобража­ются графически методом вращающегося вектора амплитуды, или методом вектор­ных диаграмм. Для этого из произвольной точки О, выбранной на оси х, под.углом j, равным начальной фазе колебания, откла­дывается вектор А, модуль которого равен амплитуде А рассматриваемого колебания (рис. 199). Если этот вектор привести во вращение с угловой скоростью w0, то про­екция конца вектора будет перемещаться по оси х и принимать значения от - A до + А, а колеблющаяся величина будет из­меняться со временем по закону s= A cos(w0t+j). Таким образом, гармо­ническое колебание можно представить проекцией на некоторую произвольно выбранную ось вектора амплитуды А, от­ложенного из произвольной точки оси под углом j, равным начальной фазе, и вра­щающегося с угловой скоростью w0 вокруг этой точки.

 

В физике часто применяется другой метод, который отличается от метода вра­щающегося вектора амплитуды лишь по форме. В этом методе колеблющуюся ве­личину представляют комплексным чис­лом. Согласно формуле Эйлера, для ком­плексных чисел

eiia=cosa+ i sina, (140.7)

где i=Ö-1 — мнимая единица. Поэтому уравнение гармонического колебания (140.1) можно записать в экспоненциаль­ной форме:

(140.8)

представляет собой гармоническое коле­бание. Обозначение Re вещественной части условимся опускать и (140.8) будем записывать в виде

В теории колебаний принимается, что ко­леблющаяся величина s равна веществен­ной части комплексного выражения, стоя­щего в этом равенстве справа.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 801; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.