КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Выравнивание статистических рядов
Во всяком статистическом распределении неизбежно присутствуют элемент случайности, связанные с тем, что число измерений ограничено, что недостаточно корректно произведены измерения и др. На практике необходимо считаться с тем, что любому статистическому распределению свойственны элементы случайности. Поэтому при обработке статистического материала часто приходиться решать вопрос о том, как подобрать для данного статистического ряда теоретическую кривую распределения, выражающую лишь существенные черты статистического материала, часто приходится решать вопрос о том, как подобрать для данного статистического ряда теоретическую кривую распределения, выражающую лишь существенные черты статистического материала. Такая задача называется задачей выравнивания (сглаживания) статистических рядов. Подбор закона распределения (принятие гипотезы о законе распределения), с достаточной точностью описывающего распределение случайной величины, производят, исходя из физической сущности исследуемого процесса или явления. Дополнительными признаками могут служить внешний вид гистограммы или многоугольника распределения и значения числовых характеристик статистического распределения случайной величины. Так, для нормального распределения все рассеивания (с точностью до 0,1%) укладываются на участке , для экспоненциального (показательного) распределения , а для пуассоновского распределения . Для рассматриваемой статистической совокупности гистограмма и многоугольник распределения имеют вид, приведенный на рис. 3.1. по их внешнему виду можно предположить, что осевые нагрузки можно описать нормальным законом распределения. Для проверки гипотезы о законе распределения измеряемой случайной величины производят расчет координат теоретической кривой распределения и проверку ее согласия со статистическим распределением. Координаты теоретической кривой распределения рассчитываются для граничных значений разрядов статистического ряда по его числовым характеристикам путем нахождения вероятности Р попадания измеряемой случайной величины в определенный интервал.
Дата добавления: 2015-04-30; Просмотров: 438; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |