Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Средние высоты снеговой границы по широтным поясам северного полушария 1 страница




Широта                    
Высота, м                    

 

2. Нанести на кальку план ледника и снеговую границу в виде пунктирной линии, перпендикулярной отрезку, соединяющему верхнюю и нижнюю точки распространения льда.

3. С помощью миллиметровки или палетки рассчитать общую площадь ледника, площади области питания (выше снеговой границы) и области абляции (ниже снеговой границы).

4. Нанести на план ледника условные знаки и штриховку, отраженную в легенде.

5. Подставив полученные значения в формулу (1), вычислить значение ледникового коэффициента.

6. Определить тип ледника Верхнего.

 

Задание 2. Используя данные задания 1 и формулу (2), определить скорость движения льда.

Методические указания:

1. Определить среднюю мощность (h) ледника с помощью уравнения h = V: F, где V – суммарный объем ледника (0,075 км3), а F – его общая площадь.

2. Рассчитать уклон (I) поверхности ледника с помощью уравнения

 

I = (Hmax - Hmin): L, (3)

 

где Hmax - Hmin – разность (м) верхней и нижней высотных отметок ледника, L – расстояние (м) между этими отметками.

3. Подставив в формулу (2) все необходимые параметры, вычислить скорость движения льда.

 

Задание 3. По карте удельного баланса массы льда (рис. 3) определить гляциодинамическое состояние ледника Марух (Кавказ).

Методические указания:

1. С помощью миллиметровки или палетки рассчитать площади контуров с различным удельным балансом массы льда в области питания и области абляции.

2. Определить средневзвешенные значения массы льда в областях с положительным и отрицательным балансом. Для удобства расчетов заполнить таблицу 3. Вычисление осуществляется путем перемножения площадей контуров на средние значения соответствующих им интервалов с последующим суммированием результатов и делением на общую площадь ледника.

Таблица 3

Данные для расчета гляциодинамического состояния ледника Марух

Значения удельной массы льда (М, г/см2) Площадь контура (F, см2) М х F Средневзвешенное значение удельной массы льда
Область питания (положительного баланса)
200-150      
150-100    
100-50    
50-0    
Всего    
Область абляции (отрицательного баланса)
0…-50      
-50…-100    
-100…-150    
-150…-200    
-200…-250    
-250…-300    
-300…-350    
Всего    

 


 

 
 

Рис. 2. План ледника Верхнего в горах Памира (380 с.ш., 720 в.д.)

1- границы ледника, 2 – снеговая граница, 3 – область питания, 4 – область абляции, 5 – высотные отметки, м

 

 
 

 

Рис. 3. Карта удельного баланса массы льда ледника Марух на Кавказе


 

3. На основании сравнения средневзвешенных значений масс льда в области питания и области абляции рассчитать дисбаланс и сделать вывод о гляциодинамическом состоянии ледника Марух.

 

ТЕМА 3. ЗАЛЕГАНИЕ И ДВИЖЕНИЕ ГРУНТОВЫХ ВОД

 

Материалы и оборудование:

- Калька (10 х 10 см);

- Миллиметровка (10 х 10 см);

- Простой карандаш, ластик, линейка;

- Калькулятор.

Понятия и определения.

Грунтовые воды – это подземные воды первого от поверхности постоянно существующего водоносного горизонта, залегающего на первом выдержанном по площади водоупорном пласте. Их свободная поверхность называется уровнем или зеркалом грунтовых вод. Расстояние от земной поверхности до уровня (зеркала) грунтовых вод является глубиной залегания грунтовых вод, а расстояние от кровли водоупорного пласта до уровня грунтовых вод – мощностью водоносного горизонта.

Фильтрация – движение по порам и трещинам грунта свободной (гравитационной) воды под действием силы тяжести и гидростатического давления в сторону уклона поверхности водоносного горизонта или в сторону уменьшения напора. При ламинарном режиме скорость движения грунтовых вод записывается в виде закона фильтрации Дарси:

 

Vф = KфI, (4)

 

где Vф – скорость фильтрации, Кф – коэффициент фильтрации, I – гидравлический уклон, равный уклону поверхности уровня грунтовых безнапорных вод. Иными словами скорость фильтрации – это отношение расхода фильтрационного потока Qф к площади поперечного сечения в пористой среде Wп:

 

Vф = Qф: Wп (5).

 

Коэффициент фильтрации (м/сут) – величина, выражающая действительную скорость фильтрации в порах и трещинах горных пород при гидравлическом уклоне, равном 1.

 

Задание 1. По карте землепользования фермерского хозяйства (рис. 4) и данным о глубине залегания грунтовых вод (табл. 4) составить карту гидроизогипс с сечением 1 м; определить направление потока грунтовых вод; уклон потока между скважиной 1 и источником II; выявить связи между грунтовыми водами и рекой; определить глубину залегания грунтовых вод на участке А, выбранном под строительство силосных ям и оценить пригодность выбранного места, если проектная глубина ям 2,5 м.

Методические указания.

1. Сделать на кальке выкопировку карты землепользования фермерского хозяйства (рис. 4).

2. По карте с помощью горизонталей определить абсолютные отметки устья скважин и занести их во второй столбец таблицы 4.

 

 
 

Рис. 4. Карта землепользования фермерского хозяйства

Таблица 4

Данные для построения карты гидроизогипс

 

№ скважины Абсолютная отметка устья скважины, м Глубина залегания грунтовых вод, м Абсолютная отметка зеркала грунтовых вод, м
    5,2  
    4,5  
    4,3  
    5,0  
    4,1  
    2,0  
    4,0  
    1,0  
    2,6  
    0,5  

 

3. Зная абсолютную отметку устья каждой скважины и глубину залегания грунтовых вод, определяем вычитанием из первого второго абсолютные отметки положения зеркала грунтовых вод. Полученные значения заносятся в третий столбец таблицы 4.

4. На кальке проставить возле каждой скважины индексы, состоящие из: числитель – абсолютная отметка зеркала грунтовых вод, знаменатель – глубина залегания грунтовых вод.

5. По данным числителя, применяя метод интерполяции, построить гидроизогипсы, выделив их синим цветом и проставив значения.

6. По значениям и изгибу гидроизогипс определить направление подземного стока, указав его в 2-3 местах стрелками. При этом отметить питают ли грунтовые воды р. Сосновка или воды реки поглощаются в грунт.

7. Определить уклон потока между скважиной 1 и источником II по формуле (3).

8. Определить глубину залегания грунтовых вод на участке А (как разность абсолютных отметок участка и зеркала грунтовых вод) и сделать заключение о пригодности места под силосные ямы.

 

Задание 2. Рассчитать скорость движения и расход грунтовых вод между скважиной 2 и источником II (рис. 4).

Методические указания.

1. Рассчитать скорость движения грунтовых вод по закону фильтрации Дарси (4), для чего из таблицы 5 выбрать соответствующее варианту значение коэффициента фильтрации, а из рисунка 4 по формуле (3) определить гидравлический уклон между скважиной 2 и источником II.

Таблица 5

Коэффициенты фильтрации некоторых видов грунта

Вариант Название грунта Коэффициент фильтрации, м/сут
  Галечник 100-200
  Песок с галькой 50-100
  Песок крупнозернистый 15-50
  Песок среднезернистый 5-15
  Песок мелкозернистый 1-5
  Песок глинистый 0,5-1,0
  Супесь 0,1-0,5
  Суглинок легкий 0,1-0,01
  Суглинок тяжелый 0,01-0,001
  Глина 0,001-0,0001 и менее

 

 

2. Вычислить поперечного сечения подземного потока, имеющего мощность водоносного горизонта равную ¼ глубины залегания зеркала грунтовых вод в скважине 2 и ширину 30 м.

3. Определить расход грунтовых вод, используя формулу (5).

 


 

ТЕМА 4. МОРФОЛОГИЯ РУСЛА И ГИДРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОТОКА

 

Материалы и оборудование:

- Миллиметровка (30 х 15 см);

- Простой карандаш, ластик, линейка;

- Калькулятор.

Понятия и определения.

Морфологические особенности русла реки могут быть охарактеризованы с помощью плана или поперечного профиля. Поперечный профиль реки – это график изменения отметок дна и водной поверхности поперек русла. Сечение русла реки вертикальной плоскостью перпендикулярной направлению течения называется водным сечением потока. Часть площади водного сечения, где наблюдаются скорости течения, является площадью живого сечения (W, м2).

Ширина реки (В, м) – это кратчайшее расстояние между урезами воды на обоих берегах.

Средняя глубинаср., м) – отношение площади живого сечения к ширине реки:

 

Нср. = W: В. (6)

 

Смоченный периметр (Р, м) – длина линии дна между урезами воды на поперечном профиле речного русла. Для крупных рек Р≈В.

Гидравлический радиус (R, м) – отношение площади живого сечения к смоченному периметру:

R = W: P. (7)

 

Распределение скоростей в живом сечении русла можно представить с помощью изотах и эпюр (рис. 5).

Изотахи – линии, соединяющие в живом сечении реки точки с одинаковыми скоростями воды, т.е. это линии равных скоростей.

Эпюры (годографы)– кривые изменения скоростей воды в реке по вертикали, изображенные на плоскости параллельной направлению течения.

Динамическая ось потока (стрежень) – линия, соединяющая по длине потока (в плане) точки отдельных живых сечений с наибольшими скоростями.

Задание 1. По данным таблицы 6 построить профиль водного сечения реки, определить его площадь, ширину реки, смоченный периметр, гидравлический радиус, среднюю и максимальную глубины реки и провести изотахи.

Методические указания.

1. По данным о глубине промерных вертикалей и расстоянию от берега (колонки 2 и 3 таблицы 6) построить на миллиметровке профиль дна, получив, таким образом, водное сечение. Вертикальный и горизонтальный масштаб выбрать самостоятельно в соответствии с форматом миллиметровки и размахом значений в таблице 6. Точки дна соединить прямыми линиями.

2. Определить площадь каждой части водного сечения, заключенной между промерными вертикалями:

Wi = a(hi + hi+1): 2,

где а – расстояние между промерными вертикалями; hi и hi+1 – глубина соседних промерных вертикалей.


 

 
 

Рис. 5. Изотахи (А) и эпюры (Б) в живом сечении реки

 

 

Таблица 6

Ведомость измеренных скоростей течения в живом сечении р. Ока, пост №1, 27.07.1990

№ промерной вертикали Расстояние от левого берега, м Глубина, (Н, м) Скорости течения (м/с) на промерных вертикалях в точках Вариант
0,1Н (от поверх.) 0,2Н 0,6Н 0,8Н 0,1Н (от дна)
Ур.л.б.   0,00           Общ.
    0,66           Общ.
    0,78 0,48 0,45 0,43 0,42 0,35 А
    0,90 0,51 0,49 0,46 0,43 0,28 Б
    1,14 0,49 0,46 0,43 0,34 0,28 А
    1,30 0,46 0,45 0,44 0,39 0,27 Б
    1,50 0,47 0,46 0,43 0,39 0,31 А
    1,96 0,51 0,51 0,45 0,42 0,38 Б
    2,16 0,60 0,58 0,50 0,46 0,44 А
    2,32 0,72 0,70 0,62 0,55 0,48 Б
    2,00 0,69 0,67 0,59 0,48 0,42 А
    1,44 0,64 0,62 0,57 0,48 0,41 Б
    0,78           Общ.
Ур.п.б.   0,00           Общ.

 

 

3. Определить общую площадь живого сечения реки:

∑W = Wi + Wi+1 + … + Wn.

4. Определить смоченный периметр, измерив его на чертеже с помощью линейки и переведя в метры согласно выбранному горизонтальному масштабу.

5. Используя формулу (7), рассчитать гидравлический радиус.

6. Используя формулу (6), вычислить среднюю глубину реки.

7. Определить максимальную глубину по промерной ведомости (табл. 6).

8. Выделить на каждой промерной вертикали своего варианта точки, соответствующие 0,1Н (от поверхности), 0,2Н, 0,6Н, 0,8Н и 0,1 (от дна). Проставить возле них значения скорости течения (колонки 4-8).

9. Методом интерполяции провести изотахи через каждые 0,05 м/с, начиная с 0,30 м/с. Каждая изотаха должна плавно, не упираясь в дно, выходить на поверхность. В разрывах указать ее значение.

 

Задание 2. По данным таблицы 6 построить эпюры на промерных вертикалях №2 и №10 (вариант А), №3 и №11 (вариант Б), сравнить их средние скорости и сделать вывод о влиянии на морфологию русла.

Методические указания.

1. При построении эпюр скоростей отложить в вертикальном направлении общую глубину промерной вертикали и отметить на ней точки измерения скоростей. Из этих точек в горизонтальном направлении в соответствии с самостоятельно выбранным масштабом отложить скорости течения, изображенные в виде отрезков. Концы отрезков соединить плавной линией (рис. 5, Б).

2. Для левой и правой эпюры рассчитать средние значения скорости, которые сравнить между собой.

3. На основании сравнения средних скоростей и конфигурации эпюр сделать заключение о причинах различной крутизны правого и левого склонов русла, положении фарватера, соотношении эрозионных и аккумулятивных процессов.

 

ТЕМА 5. ПОСТРОЕНИЕ ГИДРОГРАФА И ЕГО ГЕНЕТИЧЕСКИЙ АНАЛИЗ

Материалы и оборудование:

- Миллиметровка (20 х 20 см);

- Простой карандаш, ластик, линейка;

- Калькулятор.

Понятия и определения.

Для характеристики режима стока рек строится гидрограф – график изменения расходов воды (Q, м3/с) во времени Q = f(t). Это графическое изображение колебаний среднесуточных или среднедекадных расходов воды в течение года или в различные сезоны года. При этом водоносность реки определяется ее питанием. Выделяют снеговое, дождевое, грунтовое и ледниковое питание. На основании различных соотношений разных видов питания строится классификация рек М.И. Львовича. Если один из видов питания дает более 80% годового стока, говорят об исключительном значении данного вида питания. Если на его долю приходится от 50 до 80% - этому виду придается преимущественное значение. Если же ни один вид питания не дает более 50% стока, такое питание называют смешанным. Для ледникового питания диапазоны градаций (50 и 80%) снижены до 50 и 25%.

 

Задание 1. По данным таблицы 7 построить гидрограф р. Сулы (вариант А), р. Сосновки (вариант Б), расчленить его по видам питания, определить величину снегового, дождевого и грунтового питания и преимущественный тип питания.

Методические указания.

1. По данным таблицы 7 и в соответствии с масштабами построить на миллиметровке график изменения расходов в течение года. На оси ординат отложить значения расхода, на оси абсцисс – месяцы, разделенные на декады.


 
 

 

Рис. 6. Гидрограф реки с весенним половодьем

1 – грунтовое питание, 2 – снеговое питание, 3 – дождевое питание

 

Таблица 7

Среднедекадные расходы (Q, м3/с) и температура воздуха (t, 0С) р. Сула у с. Варва в 1982 г. (А) и р. Сосновка у с. Васильевка в 1983 г. (Б)

Дата А Б Дата А Б
Q t Q t Q T Q t
5.01       -6 5.07   +8   +8
15.01   -2   -5 15.07   +9   +8
25.01   -5   -7 25.07   +9   +10
5.02   -2   -6 5.08   +9   +12
15.02       -5 15.08   +8   +12
25.02       -5 25.08   +10   +10
5.03   +6   -3 5.09   +9   +9
15.03   +3   -1 15.09   +8   +7
25.03   +5   +4 25.09   +6   +4
5.04   +4   +6 5.10   +2   +2
15.04   +3   +4 15.10   +2   +1
25.04   +8   +4 25.10   +1    
5.05   +7   +5 5.11        
15.05   +7   +6 15.11   -1   -2
25.05   +6   +6 25.11   -2   -3
5.06   +6   +8 5.12   -3   -4
15.06   +7   +6 15.12   -6   -4
25.06   +8   +6 25.12   -6   -5

 

Вариант А. Ледостав до 1.03. и с 1.12, ледоход до 10.03, забереги с 1.11.

Вариант Б. Ледостав до 25.03. и с 25.11, ледоход до 10.04, забереги с 1.11.

 

2. Над графиком изменения расходов построить график ледовых явлений (данные ниже таблицы 7). Периоды ледостава обозначить заштрихованной линией толщиной 3 мм, ледохода – незаштрихованной, заберегов – вертикальной штриховкой.

3. Над графиком ледовых явлений вычертить график температурных изменений в течение года.

4. Расчленить полученный гидрограф на снеговое, дождевое и грунтовое питание. Для этого найти на графике самый высокий пик расхода, приходящийся на снеговое питание (определяется по смене отрицательных температур положительными). Считается, что в этот период грунтовое питание равно 0 (рис. 6). Ближе к лету его доля увеличивается, а количество снеговых вод уменьшается, и к концу мая они иссякают. Поэтому справа и слева от точки с нулевым питанием грунтовых вод провести отрезки к ближайшим впадинам (участки кривой, где падение расхода сменяется его увеличением) на гидрографе. Все пики расходов (кроме самого большого) срезать отрезками, соединяющими соседние впадины кривой. Область графика, расположенная ниже срезающих отрезков, относится к грунтовому питанию. Срезанные пики, находящиеся в диапазоне положительных температур имеют дождевое питание. Остальная часть графика – снеговые воды. Участки графика с различным питанием заштриховать согласно условным знакам легенды.

5. Подсчитать количество см2, приходящихся на каждый вид питания. Для удобства полученные результаты занести в таблицу 8.

Таблица 8

Расчет объемов разного вида питания реки

Питание Площадь в см2 «Цена» 1 см2 Объем питания
м3 %
Снеговое        
Дождевое      
Грунтовое      
Годовой объем стока  

 

6. Определить «цену» 1 см2 в единицах объема (м3). Для этого 1 см вертикального масштаба (например, 10 м3/с) надо умножить на 1 см горизонтального (например, 2 декады, т.е. 20 сут): 1 см2 = 10 м3/с · 20 сут · 86400 с = 17,28 · 106 м3.

7. Перемножив данные колонок 2 и 3 таблицы 8, рассчитать объемы стока снегового, дождевого и грунтового питания.

8. Используя классификацию М.И. Львовича, проанализировать процентное соотношение разных видов питания и определить преимущественный тип питания.

 

ТЕМА 6. ХАРАКТЕРИСТИКИ РЕЧНОГО СТОКА

 

Материалы и оборудование:

- Набор тестовых задач;

- Калькулятор.

Понятия и определения.

Для количественной оценки речного стока применяются следующие характеристики:

Объем стока (W, м3) – количество воды, протекающее в русле реки через данный замыкающий створ, за определенный промежуток времени (за год):

 

W = TQ, (8)

где T – время, число секунд в году (31,54 · 106 с), Q – средний расход, м3/с.

Норма стока (У, м3/с) – средняя арифметическая величина стока (расхода), вычисленная за длительный (более 50 лет) период. Также она рассчитывается по формуле:

 

У = AF/T, (9)

где А – слой стока, мм; F – площадь водосбора, км2; T – время, число секунд в году (31,54 · 106 с).

Модуль стока (М, л/с·км2) – количество воды, стекающей с единицы площади (1 км2) за единицу времени (с):

M = Q/F, (10)

где Q – средний расход, м3/с; F – площадь водосбора, км2.

Слой стока (А, мм) – слой воды в мм, равномерно распределенный по площади F и стекающий с водосбора за некоторый промежуток времени:

 

A = W/F, (11)

где W – объем стока, м3; F – площадь водосбора, км2.

Коэффициент стока (ά, η, безразм.) – отношение величины (объема или слоя) стока к количеству выпавших на площадь водосбора атмосферных осадков, обусловивших возникновение стока:

ά (η) = А/Х, (12)

где А - слой стока, мм; Х – количество осадков, мм. Коэффициент стока изменяется от 0 до 1. Иногда его определяют с помощью эмпирических формул, например:

 

ά (η) =1- , (13)

где d – средний многолетний дефицит влажности воздуха, мм.

 

Задание 1. По данным, приведенным в таблице 9, и на основании формул (8-13) рассчитать характеристики речного стока, помеченные вопросительным знаком.

Таблица 9

Тестовые задачи для расчета характеристик речного стока

(индексы характеристик согласно разделу Понятия и определения)




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 869; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.094 сек.