Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Порядок расчета. Указания по выполнению




Указания по выполнению

Задание 2. Многократное измерение

 

2.2.1 Условие задания

При многократном измерении одной и той жефизической величины получена серия из 24 результатов измерений Qi; i Î [1...24]. Эти результаты после внесения поправок представлены в таблице 2. Определить результат измерения.

 

Таблица 2 – Исходные данные

Предпоследняя цифра шифра Последняя цифра шифра  
                     
                      482 495
                      492 484
                      483 494
                      492 486
                      481 494
                      495 484
                      485 492
                      492 483
                      482 493
                      493 480
                       
                   

 

1. Серию экспериментальных данных студент выбирает из таблицы 2 по предпоследней и последней цифрам шифра. Например, шифру 96836 соответствует серия, включающая все результаты измерений, которые приведены в строке 3 и столбце 6.

2. Результат измерения следует получить с доверительной вероятностью 0,95.

Результат многократного измерения находится по алгоритму, представленному на рисунке 40 [1]. При этом необходимо учитывать, что n = 24, следовательно, порядок расчетов и их содержание определяются условием 10…15 < n < 40…50.

1. Определить точечные оценки результата измерения: среднего арифметического и среднего квадратического отклонения SQ результата измерения.

2. Обнаружить и исключить ошибки. Для этого необходимо:

– вычислить наибольшее по абсолютному значению нормированное отклонение

 

;

– задаться доверительной вероятностью Р и из соответствующих таблиц (таблица П.6 [3] или из таблица В.1) с учетом q = 1 – Р найти соответствующее ей теоретическое (табличное) значение νq;

– сравнить ν с νq.

Если ν > νq, то данный результат измерения Qi является оши­бочным, он должен быть отброшен. После этого необходимо повторить вычисления по пунктам 1 и 2 для сокращенной серии результатов изме­рений. Вычисления проводятся до тех пор, пока не будет выполнять­ся условие ν < νq.

3. Проверить гипотезу о нормальности распределения оставших­ся результатов измерений.

Проверка выполняется по составному критерию [3].

Применив критерий 1, следует:

– вычислить отношение

– задаться доверительной вероятностью P 1 (рекомендуется принять P 1 = 0,98) и для уровня значимости q 1 = 1 – Р 1 по соответствующим таблицам (таблица П.7 [3] или таблица Г.1) определить квантили рас­пределения d 1-0,5 q ld 0,5 q 1;

– сравнить d с d 1-0,5 q l и d 0,5 q 1.

Если d 1-0,5 q 1 < d < d 0,5 q 1, то гипотеза о нормальном законе распределения вероятности результата измерения согласуется с экспериментальными данными.

Применив критерий 2, следует:

– задаться доверительной вероятностью Р 2 (рекомендуется принять Р 2 = 0,98) и для уровня значимости q 2 = 1 – Р 2 с учетом n опреде­лить по соответствующим таблицам (таблица П.8 [3] или таблица Г.2) зна­чения m и Р *;

– для вероятности Р * из таблиц для интегральной функции нормиро­ванного нормального распределения Ф (t) (таблица 1.1.2.6.2 [2] или таблица Б.1) определить значение t и рассчитать Е = tSQ.

Если не более m разностей | i - | превосходит Е, то гипо­теза о нормальном законе распределения вероятности результата из­мерения согласуется с экспериментальными данными, закон можно признать нормальным с вероятностью Р 0 ³ (Р 1 + Р 2 – 1).

Если хотя бы один из критериев не соблюдается, то гипотезу о нормальности распределения отвергают.

4. Определить стандартное отклонение среднего арифметическо­го.

Если закон распределения вероятности результата измерений признан нормальным, то стандартное отклонение определяют как .

Если гипотеза о нормальности распределения отвергает­ся, то

 

.

 

5. Определить доверительный интервал.

Если закон распределения вероятности результата измерений признан нормальным, то доверительный интервал для заданной дове­рительной вероятности Р определяется из распределения Стьюдента Е = t × S, где t выбирается из соответствующих таблиц (таблица 1.1.2.8 [2] или таблица Д.1, при этом m = n – 1, а a = Р).

Если гипотеза о нормальности распределения отвергается, то t определяется из неравенства П. Л. Чебышева:

 

Р ³ 1 – 1/ t 2.

 




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 399; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.