КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Порядок расчета. Указания по выполнению
Указания по выполнению Задание 2. Многократное измерение
2.2.1 Условие задания При многократном измерении одной и той жефизической величины получена серия из 24 результатов измерений Qi; i Î [1...24]. Эти результаты после внесения поправок представлены в таблице 2. Определить результат измерения.
Таблица 2 – Исходные данные
1. Серию экспериментальных данных студент выбирает из таблицы 2 по предпоследней и последней цифрам шифра. Например, шифру 96836 соответствует серия, включающая все результаты измерений, которые приведены в строке 3 и столбце 6. 2. Результат измерения следует получить с доверительной вероятностью 0,95. Результат многократного измерения находится по алгоритму, представленному на рисунке 40 [1]. При этом необходимо учитывать, что n = 24, следовательно, порядок расчетов и их содержание определяются условием 10…15 < n < 40…50. 1. Определить точечные оценки результата измерения: среднего арифметического и среднего квадратического отклонения SQ результата измерения. 2. Обнаружить и исключить ошибки. Для этого необходимо: – вычислить наибольшее по абсолютному значению нормированное отклонение
; – задаться доверительной вероятностью Р и из соответствующих таблиц (таблица П.6 [3] или из таблица В.1) с учетом q = 1 – Р найти соответствующее ей теоретическое (табличное) значение νq; – сравнить ν с νq. Если ν > νq, то данный результат измерения Qi является ошибочным, он должен быть отброшен. После этого необходимо повторить вычисления по пунктам 1 и 2 для сокращенной серии результатов измерений. Вычисления проводятся до тех пор, пока не будет выполняться условие ν < νq. 3. Проверить гипотезу о нормальности распределения оставшихся результатов измерений. Проверка выполняется по составному критерию [3]. Применив критерий 1, следует: – вычислить отношение – задаться доверительной вероятностью P 1 (рекомендуется принять P 1 = 0,98) и для уровня значимости q 1 = 1 – Р 1 по соответствующим таблицам (таблица П.7 [3] или таблица Г.1) определить квантили распределения d 1-0,5 q l,и d 0,5 q 1; – сравнить d с d 1-0,5 q l и d 0,5 q 1. Если d 1-0,5 q 1 < d < d 0,5 q 1, то гипотеза о нормальном законе распределения вероятности результата измерения согласуется с экспериментальными данными. Применив критерий 2, следует: – задаться доверительной вероятностью Р 2 (рекомендуется принять Р 2 = 0,98) и для уровня значимости q 2 = 1 – Р 2 с учетом n определить по соответствующим таблицам (таблица П.8 [3] или таблица Г.2) значения m и Р *; – для вероятности Р * из таблиц для интегральной функции нормированного нормального распределения Ф (t) (таблица 1.1.2.6.2 [2] или таблица Б.1) определить значение t и рассчитать Е = t ∙ SQ. Если не более m разностей | i - | превосходит Е, то гипотеза о нормальном законе распределения вероятности результата измерения согласуется с экспериментальными данными, закон можно признать нормальным с вероятностью Р 0 ³ (Р 1 + Р 2 – 1). Если хотя бы один из критериев не соблюдается, то гипотезу о нормальности распределения отвергают. 4. Определить стандартное отклонение среднего арифметического. Если закон распределения вероятности результата измерений признан нормальным, то стандартное отклонение определяют как . Если гипотеза о нормальности распределения отвергается, то
.
5. Определить доверительный интервал. Если закон распределения вероятности результата измерений признан нормальным, то доверительный интервал для заданной доверительной вероятности Р определяется из распределения Стьюдента Е = t × S, где t выбирается из соответствующих таблиц (таблица 1.1.2.8 [2] или таблица Д.1, при этом m = n – 1, а a = Р). Если гипотеза о нормальности распределения отвергается, то t определяется из неравенства П. Л. Чебышева:
Р ³ 1 – 1/ t 2.
Дата добавления: 2015-04-30; Просмотров: 399; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |