КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Порядок расчета. Указания по выполнению
Указания по выполнению Задание3. Обработка результатов нескольких серий измерений
2.3.1 Условие задания При многократных измерениях одной и той же величины получены две серии по 12 (nj) результатов измерений в каждой. Эти результаты после внесения поправок представлены в таблице 2. Вычислить результат многократных измерений. 1. Серии в таблице 2 студент выбирает по предпоследней и последней цифрам шифра: например, шифру 96836 соответствуют все результаты измерений, которые приведены в строке 3 (серия 1) и столбце 6 (серия 2). 2. Результат измерения следует получить с достоверностью 0,95. Обработку результатов двух серий измерений целесообразно осуществлять по алгоритмам [1, с. 122-129] (последовательность расчетов и их содержание определяются условием 10...15 < n < 40...50). 1. Обработать экспериментальные данные в каждой j -й серии отдельно по алгоритму, изложенному в задании 2 (алгоритм обработки многократных измерений), при этом: – определить оценки результата измерения Qj и среднего квадратического отклонения sqj; – обнаружить и исключить ошибки; – проверить гипотезу о нормальности распределения оставшихся результатов измерений. 2. Проверить значимость различия средних арифметических серий по алгоритму, представленному на рисунке 48 [1]. Для этого следует: – вычислить моменты закона распределения разности:
G = 1 - 2, ; – задавшись доверительной вероятностью Р, определить из соответствующих таблиц интегральной функции нормированного нормального распределения Ф (t) (таблица 1.1.2.6.2 [2] или таблица Б.1) значение t; – сравнить | G | с t × Sg. Если | G | t · Sg, то различие между средними арифметическими в сериях с доверительной вероятностью Р можно признать незначимым. 3. Проверить равнорассеянность результатов измерений в сериях по алгоритму, изложенному на рисунке 50 [1]. Для этого необходимо: – определить значение ; – задавшись доверительной вероятностью Р, определить из соответствующих таблиц (таблица 16 [1] или таблица Е.1) значение аргумента интегральной функции распределения вероятности Фишера y 0; – сравнить y с y 0. Если y < y 0, то серии с доверительной вероятностью Р считают рассеянными. 4. Обработать совместно результаты измерения обеих серий с учетом того, однородны серии или нет. Если серии однородны (равнорассеянны с незначимым различием средних арифметических), то все результаты измерения следует объединить в единый массив и выполнить обработку по алгоритму на рисунке 40 [1]. Для этого необходимо: – определить оценку результата измерения и среднего квадратического отклонения S:
;
;
– задавшись доверительной вероятностью Р, определить из таблиц распределения Стьюдента (таблица 1.1.2.8 [2] или таблица Д.1) значение t для числа степеней свободы ; – определить доверительный интервал Е = t × S. Если серии не равнорассеянны с незначимым различием средних арифметических, то совместную обработку результатов измерений следует выполнять с учетом весовых коэффициентов по алгоритму, представленному на рисунке 51 [1]. Для этого необходимо: – определить оценки результата измерения – и среднего квадратического отклонения S: ; ; – аналогично предыдущему случаю, задавшись доверительной вероятностью Р, определить t и доверительный интервал. Если различие средних арифметических в сериях признано значимым, то результаты измерений в каждой серии следует обработать раздельно по алгоритму многократных измерений: – в зависимости от закона распределения вероятности результата измерения в каждой серии определить Sj; – задавшись доверительной вероятностью Р, определить по соответствующим таблицам значение tj; – рассчитать доверительный интервал Еj = Sj × tj.
Дата добавления: 2015-04-30; Просмотров: 400; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |