Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Выбор математической модели




Вид зависимости , описывающей опытные данные, выбирает экспериментатор на основе предварительных данных о природе исследуемой зависимости или о расположении эксперимента. Крайне желательно чтобы модель была содержательной, т.е. чтобы входящим в неё постоянным можно было приписать определённый физический смысл. Задача выбора математической модели решается в два этапа:

1. находят общий вид модели;

2. рассчитывают параметры модели, определяют её конкретный вид.

Если нельзя указать общий вид модели теоретически, то её определяют по форме поля рассеивания экспериментальных точек. Для этого в поле рассеивания помещают графики различных известных функций и находят такие, которые отражают особенности этого поля. Такой выбор неоднозначен, т.к. обычно можно найти несколько подходящих функций.

В некоторых случаях подбор математической модели упрощается, если масштабы по осям и выбрать так, что график аппроксимирующей функции превратится в прямую линию.

Пример:

1)

Графическое изображение в координатах , является прямой линией с угловым коэффициентом n. По графику можно грубо оценить параметры модели. Для этого проводят линию, берут на ней две точки с координатами и и рассчитывают угловой коэффициент и параметр a:

;

2) - график показательной функции превращается в прямую линию, если выбрать масштаб: можно приближено оценить параметры a и b.

Применяя функциональные шкалы, можно использовать рассмотренный метод.




Поделиться с друзьями:


Дата добавления: 2015-04-30; Просмотров: 597; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.