КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод наименьших квадратов. После того как установлен вид математической модели, аналитическими методами рассчитывают её параметры
После того как установлен вид математической модели, аналитическими методами рассчитывают её параметры. Наиболее распространен метод наименьших квадратов. Сущность метода состоит в таком выборе параметров модели, при которых сумма квадратов отклонений минимальна. Если систематическая погрешность измерений значений отсутствует, случайная погрешность подчинена гауссовскому закону с постоянной дисперсией, а погрешности последовательности измерений статистически независимы, то вычисленные с помощью метода наименьших квадратов значения параметров математической модели являются оценками максимального правдоподобия. При экспериментальной обработке системы двух связанных случайных величин можно пользоваться методом наименьших квадратов. Если предположить, что случайные величины связаны между собой по линейному закону, то метод наименьших квадратов позволяет рассчитать параметры прямой, которая называется линией регрессии. На практике эти условия выполняются редко, и метод наименьших квадратов является просто удобным аналитическим способом расчета параметров математической модели. Известно, что прямая линия имеет два параметра. Обозначим их a и b: . Метод наименьших квадратов позволяет c наилучшей точностью рассчитать коэффициенты А и В. В итоге получим: .
Дата добавления: 2015-04-30; Просмотров: 359; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |