Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Распределение Пуассона




Если число np-q - целое, то существует два наивероятнейших числа

Наивероятнейшее число успехов.

 

Число m, при котором биномиальные вероятности Pn(m) достигают своего максимального значения (при фиксированном числе испытаний n) называют обычно наиболее вероятным (наивероятнейшим) числом успехов. Справедливо следующее утверждение о наивероятнейшим числе успехов:

Наивероятнейшее число успехов m* в серии из n независимых испытаний Бернулли (с вероятностью успеха р в одном испытании) определяется соотношением np-q£m*£np+p, причем

1. если число np-q - дробное, то существует одно наивероятнейшее число m*;

m*=np-q, m*=np+p;

3. если np - целое число, то наивероятнейшее число m*=np.

Задача 3. Монета подбрасывается 3 раза. Найти наиболее вероятное число успехов (выпадений герба).

Решение. Возможными значениями для числа успехов в 3-х рассматриваемых испытаниях являются m = 0, 1, 2 или 3. Пусть Am - событие, состоящее в том, что при 3-х подбрасываниях монеты герб появляется m раз. По формуле Бернулли легко найти вероятности событий Am (см. таблицу):

m        
Pn(m) 1/8 3/8 3/8 1/8

Из этой таблицы видно, что наиболее вероятными значениями являются числа 1 и 2 (их вероятности равны 3/8). Этот же результат можно получить и из приведенного выше утверждения.

 

Задача 4. Вероятность получения удачного результата при производстве сложного химического опыта равна ¾. Найти наивероятнейшее число удачных опытов, если общее их количество равно 10.

Решение. В этом примере n=10, p=3/4=0,75, q=1/4=0,25. Тогда неравенство для наиболее вероятного числа успехов выглядит так:

np-q£m*£np+p,

т.е. 10*0,75-0,25 £m*£10*0,75+0,75,

или 7,25£m*£8,25.

Существует только одно целое решение этого неравенства, а именно, m*=8.

 

28. В каких случаях применяют формулу Пуассона? (Показать на примерах)

 

Распределение Пуассона, подобно биномиальному распределению, связано с подсчетом количества наступления некоторого события. Отличие состоит в том, что в случае распределения Пуассона нет заданного числа возможных попыток n. Вот один из примеров возникновения такой случайной величины. Если неко­торое событие происходит случайно и независимо в каждой из попыток и сред­нее число наступлений события с ростом числа попыток не изменяется, то коли­чество наступлений события в фиксированном количестве попыток будет подчи­няться распределению Пуассона. Распределение Пуассона — это распределение дискретной величины, которое зависит только от ожидаемого среднего количест­ва наступлений события.

Приведем примеры некоторых случайных величин, которые могут иметь рас­пределение Пуассона.

1. Количество заказов, которые фирма получит завтра.

2. Количество дефектов в произведенной продукции.

3. Биномиально распределенная величина X при больших n и малых p.




Поделиться с друзьями:


Дата добавления: 2015-04-23; Просмотров: 1261; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.