Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Евклидовы пространства




. Для развития геометрических методов в теории В. п. нужно указать пути обобщения таких понятий, как длина вектора, угол между векторами и т.п. Один из возможных путей заключается в том, что любым двум векторам х и у из R ставится в соответствие число, обозначаемое (х, у) и называемое скалярным произведением векторов х и у. При этом требуется, чтобы выполнялись следующие аксиомы скалярного произведения:

1) (х, у)=(у, х) (перестановочность);

2) (x1 + x2, y)=(x1, y)+(x2, y) (распределительное свойство);

3) (x, у)= (х, у),

4) (х, х)  0 для любого х, причем (х, х) = 0 только для х = 0.

Обычное скалярное произведение в трёхмерном пространстве этим аксиомам удовлетворяет. В. п., в котором определено скалярное произведение, удовлетворяющее перечисленным аксиомам, называется евклидовым пространством; оно может быть как конечномерным (n-мерным), так и бесконечномерным. Бесконечномерное евклидово пространство обычно называют гильбертовым пространством. Длина | x | вектора x и угол между векторами х и у евклидова пространства определяются через скалярное произведение формулами

Примером евклидова пространства может служить обычное трёхмерное пространство со скалярным произведением, определяемым в векторном исчислении. Евклидово n-мepное (арифметическое) пространство En получим, определяя в n -мepном арифметическом В. п. скалярное произведение векторов x =(1, …, n) и y = (1, …, n) соотношением

(x, y)= 11 + 22 + + nn. (2)

При этом требования 1)—4), очевидно, выполняются.

В евклидовых пространствах вводится понятие ортогональных (перпендикулярных) векторов. Именно векторы х и у называются ортогональными, если их скалярное произведение равно нулю: (х, у)= 0. В рассмотренном пространстве En условие ортогональности векторов x =(1, …, n) и y =(1, …, n), как это следует из соотношения (2), имеет вид:

11 + 22 + + nn = 0. (3)

Применение В. п. Понятие В. п. (и различные обобщения) широко применяется в математике и её приложениях к естествознанию. Пусть, например, R — множество всех решений линейного однородного дифференциального уравнения yn + a1 (x) y (n + 1) + + an (x) y = 0. Ясно, что сумма двух решений и произведение решения на число являются решениями этого уравнения. Таким образом, R удовлетворяет условиям А. Доказывается, что для R выполнено обобщённое условие В. Следовательно, R является В. п. Любой базис в рассмотренном В. п. называется фундаментальной системой решений, знание которой позволяет найти все решения рассматриваемого уравнения. Понятие евклидова пространства позволяет полностью геометризовать теорию систем однородных линейных уравнений:

Рассмотрим в евклидовом пространстве En векторы ai =(i1, i2, …, in), i = 1, 2,..., n и вектор-решение u =(u1, u2,..., un).Пользуясь формулой (2) для скалярного произведения векторов En, придадим системе (4) следующий вид:

(ai, u)= 0, i = 1, 2, …, m. (5)

Из соотношений (5) и формулы (3) следует, что вектор-решение u ортогонален всем векторам ai. Иными словами, этот вектор ортогонален линейной оболочке векторов ai, то есть решение u есть любой вектор из ортогонального дополнения линейной оболочки векторов ai. Важную роль в математике и физике играют и бесконечномерные линейные пространства. Примером такого пространства может служить пространство С непрерывных функций на отрезке с обычной операцией сложения и умножения на действительные числа. Упомянутое выше пространство всех многочленов является подпространством пространства С.




Поделиться с друзьями:


Дата добавления: 2015-04-23; Просмотров: 896; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.