КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Аффинные преобразования пространства
Аффинные преобразования пространства. Преобразование подобия пространства
1. 2. 3.
Доказательства свойств. 1. 2. 3.
Теорема 3.1. (о задании аффинного преобразования пространства) Для любых данных тетраэдров АВСD и А´В´С´D´ существует единственное аффинное преобразование, переводящее А в А´, В в В´, С в С´, D в D´.
Отсюда сразу вытекают ещё некоторые свойства аффинного преобразования. 4. 5.
Теперь пусть в пространстве задана система координат (О, , , ) и аффинное преобразование f переводит О в О´ , а базисные вектора в вектора , , соответственно. Найдём координаты x´, y´, z´ образа M´(x´,y´,z´) точки M(x,y,z) при преобразовании f. Будем исходить из того, что точка М в системе координат (О, , , ) имеет такие же координаты, что и точка М´ в системе координат (О´, , , ). Отсюда . Поэтому имеем равенства (*): Стоит ещё заметить, что , т.к. векторы , , линейно независимы. Этот определитель называется определителем аффинного преобразования.
. Остаётся лишь проверить, что в полученном уравнении коэффициенты при x, y, z одновременно не равны нулю. Это действительно так, т.к. иначе система с неравным нулю определителем имела бы лишь нулевое решение: А=В=С=0, что неверно.
. Воспользуемся тем, что объём ориентированного параллелепипеда, построенного на векторах как на рёбрах, равен смешанному произведению этих векторов: , где V0 – объём параллелепипеда, построенного на базисных векторах. Аффинное преобразование не изменяет координаты соответственных векторов в соответственных базисах. Поэтому для объёма V´ образа параллелепипеда объёма V имеем: , где – объём параллелепипеда, построенного на векторах , как на рёбрах. Отсюда получаем: . Далее , поэтому для неориентированных объёмов имеем . На все тела это равенство можно распространить аналогично доказательству свойства 4 подобий (часть II, §2).
Вершина параллелепипеда соединена с центрами трёх не содержащих её граней. Найдите отношение объёма полученного тетраэдра к объёму данного параллелепипеда. Решение. Посчитаем данное отношение для куба и, переведя аффинным преобразованием куб в параллелепипед, воспользуемся тем, что аффинное преобразование сохраняет отношение объёмов. Для куба отношение легко считается. Оно равно 1:12. Ответ: 1:12.
Дата добавления: 2015-04-23; Просмотров: 1833; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |