КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Виды проецирования
Аффинные преобразования в пространстве Для выполнения пространственных построений, аналогично двумерной задаче, три координаты точки (x, y, z) заменяются четверкой чисел (x, y, z, 1). Это дает возможность воспользоваться матричной записью и в более сложных трехмерных задачах. Любое аффинное преобразование в трехмерном пространстве может быть представлено в виде суперпозиции вращений, растяжений, отражений и переносов. Математически все преобразования сводятся к перемножению матриц четвертого порядка. Например, матрица вращения вокруг оси абсцисс на угол j имеет вид: . Изображение трехмерных объектов на картинной плоскости связано с еще одной геометрической операцией – проецированием при помощи пучка прямых. В компьютерной графике применяется несколько различных видов проецирования. Наиболее часто используется параллельное и центральное проецирование. Для получения проекций объекта на картинную плоскость необходимо провести через каждую его точку прямую из заданного проецирующего пучка и затем найти координаты точки пересечения этой прямой с плоскостью изображения. В случае центрального проецирования все прямые исходят из одной точки – центра пучка. При параллельном проецировании считается, что центр пучка расположен в бесконечности (рис. 4). Математически операция проецирования также сводится к перемножению соответствующих матриц.
35. Движение (в геометрии) Движение в геометрии, преобразования пространства, сохраняющие свойства фигур (размеры, форму и др.) Понятие Д. сформировалось путем абстракции реальных перемещении твердых тел. Д. евклидова пространства — геометрическое преобразованиепространства, сохраняющее расстояния между точками. Д. называют собственным или несобственным в зависимости от того, сохраняет ли оно или меняет ориентацию, Д. есть ортогональное преобразование. Собственное Д. на плоскости можетбыть задано в прямоугольной системе координат (х, у) посредством следующих формул: х; = xcosj — ysinj + a, у; = xsinj + ycosj + b, показывающих, что совокупность всех собственных Д. на плоскости зависит от трёх параметров а, b и j, которые характеризуют соответственно параллельный перенос плоскости на вектор (а, b) и её поворот вокруг начала координат на угол j. Всякое собственное Д. может быть представлено либо как параллельный перенос, либо как вращение вокруг некоторой точки. Любое несобственное Д. представимо в виде произведения (последовательного осуществления) параллельного переноса вдоль некоторого направления и симметрии относительно прямой, имеющей то же самое направление. Собственное Д. в пространстве есть или вращение вокруг оси, или параллельный перенос, или же может быть представлено в виде винтового движения (вращения вокруг оси и параллельного переноса в направлении этой оси). Несобственное Д. в пространстве есть либо симметрия относительно плоскости, либо может быть представлено в виде произведения симметрии относительно плоскости на вращение вокруг оси, перпендикулярной этой плоскости, либо в виде произведения симметрии относительно плоскости на перенос в направлении вектора, параллельного этой плоскости, Д. в пространстве аналитически может быть представлено посредством линейного преобразования с ортогональной матрицей, определитель которой равен 1 или -1, в зависимости от того, является Д. собственным или несобственным, Понятие Д. переносится в римановы пространства, в пространства аффинной связности. Важную роль понятие Д. играет в римановых пространствах теории относительности (сильная асимметрия гравитационных полей накладывает ограничения на движения твёрдых тел в таких пространствах). Д. может быть принято в качестве основного понятия при аксиоматическом построении геометрии. В этом случае вместо аксиом конгруэнтности вводятся аксиомы Д. Конгруэнтность отрезков, углов и др. фигур определяется через понятие Д. (фигуры называются конгруэнтными, если одна переходит в другую при помощи некоторого Д.). Совокупность Д. образует группу. 36. Два вида движений. Инвариантные точки, прямые и плоскости 37. Классификация движений пространства.
Будем доказывать их не по порядку, т.к. при доказательстве некоторых теорем удобно использовать другие.
Доказательство теоремы 7.1.б. Опять возьмём произвольную точку А, её образ А´ при движении f и плоскость ω симметрии точек А и А´. Тогда движение второго рода имеет неподвижную точку А. По теореме 7.2.а движение g – зеркальная симметрия или поворотная симметрия. Если g – зеркальная симметрия, то f является композицией двух зеркальных симметрий. Кроме того f не имеет неподвижных точек, т.е. f – параллельный перенос. Пусть теперь () – поворотная симметрия. Представим (), причём выберем . Тогда . Т.к. , , и – осевые симметрии. Итак, – композиция двух осевых симметрий. Если a и b пересекаются, то у f есть неподвижная точка, что невозможно. Если a и b параллельны, то f, как легко убедиться, – параллельный перенос. Если а и b скрещиваются, то рассмотрим их общий перпендикуляр h и прямую p такую, что p проходит через точку пересечения h и a и p||b. Тогда, как легко убедиться, – поворот вокруг прямой h на некоторый угол, а – параллельный перенос на некоторый вектор . Поэтому – винтовое движение.
Дата добавления: 2015-04-23; Просмотров: 1510; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |