Точка пересечения высот треугольника. Она является ортоцентром треугольника.
Точка пересечения медиан треугольника. Она является центром тяжести треугольника.
Теорема о центре тяжести треугольника. Все медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от соответствующей вершины.
С
В
В1
А1
А
О
Доказательство:
1). Медиана АА1 пересекает АВ в точке А1. Медиана ВВ1 пересекает АС в точке В1. Тогда А1В1– средняя линия.
2). Рассмотрим D АОВ и D А1ОВ1.
3). Из подобия треугольников:
4). Аналогично доказывается, что точка О делит медиану СС1 в отношении 2:1.
2. Рассмотрим D АВС и D А2ВС и аналогично докажем, что
3. Рассмотрим D АВС и D В2АС и аналогично докажем, что
4.
5. Аналогично докажем, что АА1 – серединный перпендикуляр к отрезку В2С2, а СС1 – серединный перпендикуляр к отрезку В2А2.
6. Отрезки В2С2, В2А2 и А2С2 образуют треугольник А2В2С2, в котором серединные перпендикуляры пересекаются в одной точке. Следовательно, высоты треугольника АВС пересекаются в одной точке.
12. Доказать признаки подобия треугольников.
Первый признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление