Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Логарифмический декремент затухания




δ = ln (A(t) / A(t + ПИ)) = ln (A0 e (ст. – БЕТА t) / A0 e (ст. – БЕТА (t + ПИ))) = ln (A0 e (ст. – БЕТА t) / A0 e (ст. – БЕТА t) e (ст. – БЕТА ПИ)) = БЕТА T;

δ = БЕТА T = 1 / N; Время релаксации (ТАУ) в течении которого амплитуда затухающих колебаний убывает в e раз; A = A0 / e = A0 e (ст. – БЕТА ТАУ); e (ст. - 1) = e (ст. – БЕТА ТАУ) – БЕТА ТАУ = 1;

ТАУ = 1 / БЕТА; N = ТАУ / T – число колебаний, в течении которых амплитуда убывает в e раз; δ = 1 / N;

Добротность. Q = [2 ПИ W (t)] / [W (t) – W (t + T)]; Добротность Q – это величина, пропорциональная отношению энергии, запасенной в колебательной системе к уменьшению этой энергии за один период. Т.к. энергия, запасенная в колебательной системе пропорциональна квадрату амплитуды, то: Q = 2 ПИ A (ст.2) (t) / A (ст.2) (t) – A (ст.2) (t +T);

A = A0 e (ст. – БЕТА t); Q=2ПИ A0 e(ст.-2 БЕТА t) / A0 (ст.2) e(ст. –2 БЕТА t) – A0 e (ст.-2 БЕТА (t + T)); Q = 2ПИ / (1 – e (ст. –2 БЕТА t)); Q=ПИ / δ – при малых затуханиях.

Вынужденные колебания осциллятора под действием синусоидальной силы.; ma = F; m d2 x / dt (ст.2) = F; Fупр = - kx; Fтр = - b dx / dt; F = F0 sinΩt; (d2 x / dt (ст.2)) + (2 БЕТА dx / dt) + w 0 (ст.2) = (F0 / m) sin Ωt; Это дифференциальное уравнение описывает вынужденные колебания. В общем случае общее решение этого неоднородного дифференциального уравнения имеет вид: X(t) = X1(t) + X2(t); X1(t) является общим решением однородного диф. уравнения, описывающего свободный гармонический затухающий осциллятор. Видно, что после начала действия вынуждающей силы возникает сложный колебательный процесс, состоящий из суммы 2х колебаний – затухающего колебания X1(t) с частотой wt и незатухающего колебания с частотой Ωt. X1(t) за достаточно небольшой промежуток времени затухает и остается только одно колебание с частотой вынужденной силы Ω0. Это время, в течении которого X1(t) затухает, называется временем установки вынужденных колебаний. Чем больше добротность осциллятора, тем больше время установления ТАУ~10 Q/w0 (это время, в течении которого амплитуда затухающего колебания уменьшится в 100 раз).

В общем случае установившееся вынужденное колебание имеет вид:

X = A sin (Ωt + ФИ); непосредственно подставляя это выражение в дифференциальное уравнение вынужденного колебания можно получить:

A = F0 / m (корень (w 0 (ст.2) – Ω(ст.2) + ФИ БЕТА (ст.2) Ω (ст.2));

tgФИ = - 2 БЕТА Ω / (w 0 (ст.2) – Ω (ст.2))

1. при Ω=0; A = F0 / m w 0 (ст.2) = F0 / k – статическое смещение.

2. при ΩàБЕСКОНЕЧНОСТЬ; Aà0;

Максимум амплитуды вынужденных колебаний достигается при частоте

Ω = (корень w 0 (ст.2) – БЕТА (ст.2));

При частоте w = (корень w 0 (ст.2) – БЕТА (ст.2)) амплитуда достигает максимума: Amax = F0 / 2 m БЕТА Ω

Явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты вынужденной силы с соответственной частотой колебаний системы называется резонансом. Амплитуда колебаний при резонансе зависит от затухания, чем оно больше, тем меньше амплитуда. При нулевом затуханиии амплитуда колебаний при резонансе достигает бесконечно большой величины.

 

1.11. Волновые процессы.

Волна. Плоская и синусоидальная волна. Бегущая и стоящая волна.

Процесс распространения колебаний в сплошной среде называется волновым процессом или волной.

Поперечные волны – это волны, в которых смещение количества частиц происходит перпендикулярно направлению распространения волны.

Продольные волны – это волны, в которых смещение количества частиц происходит в направлении распространения волны.

Поперечные волны могут возникать в средах, в которых появляются упругие силы при деформации сдвига.

Волновой фронт – это геометрическое место точек пространства, до которого дошли колебания к моменту времени t. Фаза колебания у всех этих точек имеет одно и то же значение.

Волновая поверхность – это геометрическое место точек в пространстве, фаза колебания которых одинакова.

Волновой фронт один, а волновых поверхностей бесчисленное множество. В зависимости от формы фронта или волновой поверхности волны делятся на плоские, сферические и т.д.

Бегущая волна – это волна, которая переносит энергию.

Стоячая волна энергии не переносит. Стоячие волны образуюся в результате интерференции (наложения) 2х одинаковых, противоположных по направлению волн. Энергия, переносимая волной количественно характеризуется вектором плотности потока энергии, вектором Умова.

y = A sin (wt + φ0)

Колебания в точку, расположенную на расстоянии X от начала координат приходит с запозданием на время x/v и среднее колебание в точке, с координатами X будет описываться выражением:

y (x, t) = A sin [w (t – x/v) + φ0]; w (t – x/v) = wt – wx/v; w = 2ПИ/ T;

λ = vT à T = λ / v; w = 2ПИ v/ λ;

X = 2ПИ / λ – ВОЛНОВОЕ ЧИСЛО (волновой вектор) – вектор, направление которого совпадает с направлением движения волны.

y (x, t)= Asin (wt – kx + φ0) – уравнение плоской синусоидальной бегущей волны, распространяющейся в положении направления оси X. Учитывая формулу Эйлера, эту плоскую волну можно записать в виде

y (x, t) = A e (ст. i (wt – kx + φ)); sinx(t) = A sin (wt – kx + φ0).

Фазовая скорость волны – это скорость распространения точки с постоянной фазой – Ф = const; v = dx / dt; Дифференцируем Ф и получаем:

dФ = d (wt – kx – φ0) = wdt – kdx à dx / dt = w/k – фазовая скорость волны!

Дисперсия света. Фазовая скорость волны может зависить от ее частоты w, это явление называется дисперсией. Среда, при распространении в которой волны, ее фазовая скорость зависит от частоты, называется дисперсирующей средой.

Эффект Доплера. Эффектом Доплера называют изменения частоты колебаний, воспринимаемых приемником, при движении источника и приемника этих колебаний относительно друг друга.

1) скорость источника = скорость приемника = 0; λ = vT; МЮ (выглядит как v) = v / λ = v / vT = 1/ T = МЮo; МЮ = МЮo;

2) v ист = 0, v пр > 0; МЮ = (v + v пр) / λ = (v + v пр) / vT = МЮo (1 + v пр / v); МЮ = (1 + - v пр / v);

3) v пр = 0, v ист > 0; λ’ = λ – v ист T = vT – v ист T = (v – v ист) T;

МЮ = v/ λ’ = МЮo / (1 + - v ист / v);

Все возможные случаи: МЮ = МЮo (1 + - v пр/ v) / (1 + - v ист / v)

Групповая скорость и ее связь с фазовой скоростью. Если среда, в которой распространяются одновременно несколько волн линейно, т.е. ее свойства не зависят от возмущений, создаваемых волнами, то у этой среде применим принцип суперпозиции: при распространении нескольких волн в среде, каждая из них распространяется независимо от других, а результат их совместного действия является простой суммой действия каждой из этих волн.

Волновой пакет – это суперпозиция волн, мало отличающихся по частоте и занимающих в каждый момент времени ограниченную область пространства. (рисунок – график сжатой синусойды – сначало высота по y возрастает, а потом уменьшается, не периодична).

Рассмотрим простой волновой пакет, состоящий из 2х близких по частоте волн с одинаковой амплитудой.

Групповая скорость – это скорость перемещения в пространстве этого волнового пакета.

S1 = Asin (wt - kx); S2 = Asin [(w + dw) t – (k + dk) x]; S = S1+S2;

S=2Asin (wt – kx) cos ((xdk – tdw) / 2); xdk – tdw = const; u = dx/dt;

d (xdk - tdw) = 0; dx dk – dt dw = 0 à dx / dt = dw / dk; u = dw / dk;

w = kv; dw = kdv + vdk; u = v + k (dv / dk); k = 2ПИ / λ;

dk = (2ПИ/ λ(ст.2)) dλ; u = v – λ (dv / dλ); Из этого выражения видно, что в зависимости от свойств среды групповая скорость может быть как больше, так и меньше фазовой скорости. Если среда не дисперсирующая, то dv / dλ = 0 и u = Ф. В теории относительности доказывается, что групповая скорость волны не может быть больше скорости света. На фазовую скорость ограничений не накладывается.

Одномерное волновое уравнение. Распространение волн в однородной среде в общем случае описывается волновым уравнением – дифференциальным уравнением 2го порядка. Если рассматривать трехмерный случай, то волна будет представлять вот что: S (x, y, z, t)

2 S/ д x (ст.2))+(д 2 S/ д y (ст.2))+(д 2 S/ д z (ст.2)) = (1/v(ст.2)) (д 2 S/ д t (ст.2))

где v – фазовая скорость волны; (если из левой части вынести S, то получим оператор Лапласа, который обозначается перевернутым треугольником).

В одномерном случае будет так:

S (x, t) = Asin (wt – kx + φ0); Непосредственной подстановкой можно убедиться, что эта плоская волна удовлетворяет одномерному волновому уравнению.

 




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 669; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.