Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Зависимость физических свойств веществ с молекулярной структурой от характера межмолекулярного взаимодействия. Влияние водородной связи на свойства веществ




Концепция гибридизации атомных орбиталей и пространственное строение молекул и сложных ионов. Типы гибридизации sp, sp2, sp3, dsp3,d2sp3. Гибридизация с участием неподеленных электронных пар.

Гибридизация атомных орбиталей – это смешение атомных орбиталей (электронных облаков) различного типа, в результате которого образуются одинаковые по форме и энергии гибридные орбитали.

Число образующихся гибридных орбиталей равно числу орбиталей, участвующих в гибридизации.

Наиболее важные типы гибридизации орбиталей: sp (смешение одной s и одной p орбитали), sp2 (смешение одной s и двух p орбиталей), sp3 (смешение одной s и трех p орбиталей), dsp3,d2sp3.

Гибридизация АО происходит при образовании ковалентной связи, если при этом достигается более эффективное перекрывание орбиталей. Гибридизация атома углерода осуществляется его возбуждением и переносом электрона с 2 s - на 2 р -АО. Согласно представлению о гибридизации, химические связи образуются смешанными – гибридными орбиталями (ГО), которые представляют собой линейную комбинацию АО данного атома (s- и p-АО Be, B, C), обладают одинаковыми энергией и формой, определенной ориентацией в пространстве (симметрией).

 

Основные положения теории гибридизации атомных орбиталей:
1)Введение гибридных орбиталей служит для описания направленных локализованных связей. Гибридные орбитали обеспечивают максимальное перекрывание АО в направлении локализованных σ-связей.
2)Число гибридных орбиталей равно числу АО, участвующих в гибридизации.
3)Гибридизуются близкие по энергии валентные АО независимо от того, заполнены они в атоме полностью, наполовину или пусты.
4)В гибридизации участвуют АО, имеющие общие признаки симметрии.


Гибридные орбитали дают молекулы с углами 180°, 120°, 109°28', 90°. Это правильные геометрические фигуры. Такие молекулы образуются, когда все периферические атомы в многоэлектронной молекуле (или ионе) одинаковы и их число совпадает с числом гибридных орбиталей. Однако, если число гибридных орбиталей больше числа связанных атомов, то часть гибридных орбиталей заселена электронными парами, не участвующими в образовании связи, – несвязывающими или неподеленными электронными парами.

 

sp -гибридизация – s- и p-орбитали дают две sp-ГО, расположенные под углом 180° друг относительно друга.
Гибридные sp-орбитали участвуют в образовании двух σ-связей. Две р-орбитали не гибридизованы и расположены во взаимно перпендикулярных плоскостях

p-Орбитали образуют в соединениях две p-связи.
Для элементов 2-го периода sp -гибридизация происходит по схеме: 2s + 2px= 2 (2sp), 2py- и 2pz-АО не изменяются.

sp-гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 2

sp2 -гибридизация (плоскостно-тригональная)

Одна s - и две p -орбитали смешиваются, и образуются три равноценные sp 2-гибридные орбитали, расположенные в одной плоскости под углом 120°

Они могут образовывать три σ-связи. Третья р -орбиталь остается негибридизованной и ориентируется перпендикулярно плоскости расположения гибридных орбиталей. Эта р -АО участвует в образовании π-связи.

Для элементов 2-го периода процесс sp 2-гибридизации происходит по схеме: 2s + 2px + 2py = 3 (2sp2), 2pz-АО в гибридизации не участвует. sp2 -гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов или число его неподеленных электронных пар равна 3. Углерод в sp2-гибридном состоянии образует простое вещество графит. Это состояние характерно для атомов С, N, O и др. с двойной связью. Например, в молекулах ВН3, SO2, SO3, HCOOH, HCONH2 (атомы C и N).

 

sp3 -гибридизация – гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов или число его неподеленных электронных пар равна 4.

На ¼ имеют характер s-орбитали и на ¾ p-орбитали, поэтому у них более вытянутая форма чем у sp2, и от центра атома они расходятся под углами 1090 (к вершинам тетраэдра). Подобный тип имеется в атомах углерода, азота, титана.

d2sp3 -гибридизация – когда к одной s и трем p орбиталям примешивается еще две d орбитали, в результате получаются шесть гибридных орбиталей, направленных от ядра атома к вершинам октаэдра под углом 900 относительно друг друга. Встречается у d-элементов IV периода (Cr, Mn, Fe, Co, Ti).

 

dsp3 -гибридизация


Сравнительная характеристика методов МО и ВС
Оба квантовомеханических подхода к описанию химической связи – методов МО и ВС – приближенны, метод МО придает преувеличенное значение делокализации электрона в молекуле и основывается на одноэлектронных волновых функциях – молекулярных орбиталях. Метод ВС преувеличивает роль локализации электронной плотности и основывается на том, что элементарная связь осуществляется только парой электронов между двумя атомами. Сравнивая методы ВС м МО, следует отметить, что достоинством первого является его наглядность: насыщаемость связи объясняется как максимальная ковалентность, направленность вытекает из направленности атомных и гибридных орбиталей; дипольный момент молекулы складывается из дипольных моментов связей, разности ОЭО атомов, образующих молекулу, и наличия неподеленных электронных пар. Метод ВС достаточно хорошо предсказывает валентные возможности атомов и геометрию образующейся молекулы. Однако существование некоторых соединений невозможно объяснить с позиций метода ВС. Это электронодефицитные соединения (B2H6, NO,) и соединения благородных газов (XeF2, XeF4, ХеО3). Их строение легко объясняет метод МО. Устойчивость молекулярных ионов и атомов в сравнении с молекулами легко предсказывается с позиции метода МО. И, наконец, магнетизм и окраска вещества также легко объясняются метода МО. Количественные расчеты в методе МО, несмотря на свою громоздкость, все же гораздо проще, чем в методе ВС. Поэтому в настоящее время в квантовой химии метод ВС почти не применяется. В то же время качественно выводы метода ВС гораздо нагляднее и шире используются экспериментаторами, чем метода МО. Основанием для этого служит тот факт, что реально в молекуле вероятность пребывания данного электрона между связанными атомами гораздо больше, чем на других атомах, хотя и там она не равна нулю. В конечном счете, выбор метода определяется объектом исследования и поставленной задачей.

Исключительно важную роль водородная связь играет в биологических макромолекулах, таких неорганических соединениях как H2O, H2F2, NH3. Так, фтористоводородная кислота (HF) является слабой кислотой в отличие от других галогенводородных кислот за счет водородной связи она димеризуется (H2F2) и может образовать кислые соли (NaHF2). За счет водородных связей вода характеризуется столь высокими по сравнению с водородными соединениями других элементов (электронных аналогов) главной подгруппы шестой группы температурами плавления и кипения:

 

соединение Н2Te Н2Se H2S Н2О
Tкип.0С -2 -42 -60  

 

Если бы водородные связи отсутствовали, то вода плавилась бы при –100 °С, а кипела при –80 °С.





Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 2472; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.119 сек.