Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Коэффициент взаимной сопряженности Чупрова и Пирсона




Измерение тесноты связи между атрибутивными признаками

В статистической практике приходится сталкиваться с задачами измерения связи между качественными признаками. Для этого статистической наукой разработаны методы, которые называются непараметрическими.

Коэффициент взаимной сопряженности Чупрова и Пирсона применяется тогда, когда исследуется теснота связи между варьированием двух атрибутивных признаков, когда это варьирование образует 3 и более группы по каждому признаку.

Коэффициенты принимают значения от 0 до 1, и чем ближе к 1, тем теснее связь.

Этот метод обычно используется для установления характера связи при относительно небольшом числе наблюдений. С помощью этого приема можно дать самую общую характеристику связи посредством сравнения факторного и результативного признаков.

Коэффициент взаимной сопряженности Пирсона вычисляется по формуле:

где φ2 – показатель взаимной сопряженности.

Коэффициент взаимной сопряженности Чупрова вычисляется по следующей формуле:

где φ2 – показатель взаимной сопряженности,

m1 – количество групп по первому признаку,

m2 – количество групп по второму признаку.

Коэффициент Чупрова всегда меньше коэффициента Пирсона. Он дает обычно более осторожную оценку связи.

Пример (для нахождения показателя взаимной сопряженности).

 

Таблица 10.1 – Распределение предприятий по техническому и организационному уровню развития

 

Орг. Уровень Тех. уровень Ниже среднего Средний Выше среднего Всего
Ниже среднего 3,27 (49) 3,2 (64) 5,6 (100) 12,07 0,4828
Средний 1,07 (16) 2,45 (49) 0,056 (1) 3,576 0,298
Выше среднего 1,07 (16) 1,25 (25) 2,72 (49) 5,04 0,315
Итого:       1,0958= φ2+1

 

1 Каждую частоту возведем в квадрат и запишем соответствующий результат в скобках.

2 Делим число, стоящее в скобках, на величину в итоговой строке.

3 Числа, полученные во втором пункте, складываем по строкам и записываем в графу «Итого»: 3,27+3,2+5,6=12,07.

4 В графе «Итого» делим второе число на первое и результат записываем в эту же графу: 12,07/25=0,4898.

5 Результаты, полученные в 4-м пункте, складываем и записываем в правом нижнем углу таблицы.

φ2= 1,0958-1=0,0958 – показатель взаимной сопряженности.

.

Связь незначительная.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 5346; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.