Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Разложение вектора по координатным осям




Координаты вектора.

Рассмотрим прямоугольную систему координат в трехмерном пространстве OXYZ. Вектору в данном пространстве соответствует тройка чисел (x,y,z), являющихся проекциями вектора на оси Ox, Oy, Oz. Эти числа называются координатами вектора .

Числа получаются как разность соответствующих координат точек A(x0,y0,z0) и B(x1,y1,z1):

x= x1-x0, y= y1-y0, z= z1-z0

а модуль вектора , равный его длине, вычисляется по теореме Пифагора:

.

Пусть вектор задан своими проекциями на оси координат Ox, Oy, Oz.
Выберем на оси Ox вектор = (1,0,0), на оси Oy - вектор = (0,1,0), на оси Oz - вектор = (0,0,1).
Они взаимно-перпендикулярны и имеют единичную длину. Векторы , и называют ортами координатных осей.

Вектор лежит на оси Ox и его длина равна x, поэтому Аналогично Сумма этих векторов дает вектор :

Это выражение называется формулой разложения вектора по ортам координатных осей.
Используя эту формулу, нетрудно получить:




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 1593; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.