Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Приклади. 1. Обчислити інтеграли методом безпосереднього інтегрування

Читайте также:
  1. Екосистеми: означення, типи, види, стани. Приклади.
  2. Навести приклади.
  3. Назвати рідкі форми лікарських засобів, дати характеристику, навести приклади.
  4. Охарактеризувати симпатолітичні речовини: механізм дії, покази до застосування, побічна дія. Навести приклади.
  5. Перерахувати тверді форми лікарських засобів, назвати основні правила виписування рецептів, навести приклади.
  6. Податкові пільги як елемент системи оподаткування: сутність, переваги і недоліки застосування, види. Наведіть приклади. 1 страница
  7. Податкові пільги як елемент системи оподаткування: сутність, переваги і недоліки застосування, види. Наведіть приклади. 2 страница
  8. Податкові пільги як елемент системи оподаткування: сутність, переваги і недоліки застосування, види. Наведіть приклади. 3 страница
  9. Податкові пільги як елемент системи оподаткування: сутність, переваги і недоліки застосування, види. Наведіть приклади. 4 страница
  10. Популяції: означення, основні параметри, структури. Приклади.
  11. Приклади.



1. Обчислити інтеграли методом безпосереднього інтегрування

а) , б) , в) , г).

Розв'язання. а. За формулою 2 з таблиці невизначених інтегралів для дістаємо

;

б. Розкриємо дужки під знаком інтеграла і за формулою для визначаємо

;

в. Згідно з властивостями 3 і 4 невизначеного інтеграла і табличними інтегралами маємо

.

г. За формулою 9 із таблиці невизначених інтегралів для дістаємо

.

2. Обчислити інтеграл методом заміни змінної під знаком інтеграла (підстановки) та здійснити перевірку правильності знаходження інтеграла.

а) , б) , в) ,

г) , д) , е) .

Розв'язання. а. Здійснимо заміну змінної . Тоді

.

Щоб перевірити, чи правильно знайдено інтеграл знайдемо похідну від результату інтегрування:

.

Отже, інтеграл знайдено правильно.

б. У цьому прикладі застосуємо перетворення над підінтегральною функцією , а потім здійснимо заміну змінної :

.

Перевірка: . Інтеграл знайдено правильно.

в. .

Перевірка: .

г. .

Перевірка:

.

д. Врахувавши, що та , здійснимо заміну змінної під знаком інтеграла t=arctgx:

.

Перевірка: .

 

е. Для цього інтеграла слід врахувати, що та здійснити заміну t=sinx:

.

Перевірка:

.

3. Обчислити інтеграл методом інтегрування за частинами:

а) , б) , в) , г) ,

д) , е) .

Розв'язання. а. Щоб скористатись базовою формулою (5.3) позначимо: , . Тоді , . Підставивши , і у праву частину базової формули дістанемо

.

Якщо ж позначити : , , то дістанемо , , та

.

Інтеграл справа став складнішим ніж інтеграл зліва . Тому в методі інтегрування частинами підінтегральний вираз недоцільно представляти у вигляді добутку udv, якщо та .

б. Позначимо: , . Тоді , . Підставивши , і у праву частину базової формули (5.3) дістанемо

;

в) ;

г) У цьому прикладі застосовується спочатку метод інтегрування частинами, а потім метод підстановки:

.

д) У розглядуваному випадку інтегрування за частинами потрібно застосувати кілька разів:

.

е)

.

Завдання для самостійного розв'язання

1. Обчислити невизначений інтеграл методом безпосереднього інтегрування:

а) , б) , в) ,

г) , д) е) .

2. Обчислити невизначений інтеграл методом заміни:

а) , б) , в) ,

г) , д) , е) , ж) .

3. Обчислити невизначений інтеграл методом інтегрування за частинами:

а) , б) , в) ,

г) , д) , е) .

4. Обчислити невизначений інтеграл, вибравши один із методів інтегрування:

а) , б) , в) , г) ,

д) , е) , ж)

 





Дата добавления: 2015-05-23; Просмотров: 98; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:

  1. Екосистеми: означення, типи, види, стани. Приклади.
  2. Навести приклади.
  3. Назвати рідкі форми лікарських засобів, дати характеристику, навести приклади.
  4. Охарактеризувати симпатолітичні речовини: механізм дії, покази до застосування, побічна дія. Навести приклади.
  5. Перерахувати тверді форми лікарських засобів, назвати основні правила виписування рецептів, навести приклади.
  6. Податкові пільги як елемент системи оподаткування: сутність, переваги і недоліки застосування, види. Наведіть приклади. 1 страница
  7. Податкові пільги як елемент системи оподаткування: сутність, переваги і недоліки застосування, види. Наведіть приклади. 2 страница
  8. Податкові пільги як елемент системи оподаткування: сутність, переваги і недоліки застосування, види. Наведіть приклади. 3 страница
  9. Податкові пільги як елемент системи оподаткування: сутність, переваги і недоліки застосування, види. Наведіть приклади. 4 страница
  10. Популяції: означення, основні параметри, структури. Приклади.
  11. Приклади.




studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.162.152.232
Генерация страницы за: 0.008 сек.