КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лабораторна робота №5. Тема: Дослідження технологій виконання матричних операцій в Excel
Тема: Дослідження технологій виконання матричних Мета: Навчитися виконувати математичні операції з матрицями засобами програми Excel. Час виконання: 4 години. Навчальні питання: 1. Додавання та множення матриць. 2. Транспонування матриць. 3. Обернення матриць. 4. Обчислення детермінанту. Завдання та методичні рекомендації: – додавання двох матриць та множення матриці на скаляр виконують за допомогою звичайних формул або формул масивів; – добуток матриць, транспонування та обернення матриць виконуються як функції (формули) масивів. 1. Виконати додавання матриць двома способами: звичайними формулами (використати автозаповнення) та формулами масивів (А + В).
2. Помножити матрицю на скаляр. МР: використати абсолютні посилання $А$I у формулі та автозаповнення.
3. Знайти добуток двох матриць. МР: кількість стовпчиків першої матриці повинна дорівнювати кількості рядків другої матриці; внутрішні розміри збігаються; для результату виділити діапазон, який визначається кількістю рядків першої матриці і кількістю стовпчиків другої, тобто розміри результуючої матриці складаються із „зовнішніх” розмірів; функція МУМНОЖ (матриця 1; матриця 2); завершення операції: <ctrl + shift + Enter>. 1) , , ; 2) , , . 4. Транспонування матриць двома способами. МР: спосіб 1: копіювання через буфер обміну за допомогою команди Специальная вставка в меню Правка або контекстному меню; спосіб 2: функція ТРАНСП (матриця) – для даного способу необхідно виділити діапазон відповідного (транспонованого) розміру і завершити операцію: <ctrl + shift + Enter>. ; ; ; . 5. Обчислення детермінанта матриці. МР: обчислюється тільки для квадратних матриць; якщо детермінант det A = 0, тоді матриця – сингулярна (особова) і обернення матриці виконати неможливо; якщо det A 0, тоді матриця – несингулярна (не особова), її можна обертати; функція МОПРЕД (матриця). Обчислити det A: 6. Обернення матриць. МР: det A 0, тобто матриця повинна бути несингулярною; виділити діапазон для результату, який відповідає початковій матриці; функція МОБР (матриця); завершення операції: <ctrl + shift + Enter>. Виконати обчислення матриць попереднього завдання. 7. Розв’язування систем лінійних рівнянь. МР: нехай дано систему рівнянь . Запишемо її у матричній формі , тоді , де ; ; ; – матриця, обернена до матриці . Для того щоб знайти корені системи треба обернути матрицю та виконати множення матриць . Розв’язати системи рівнянь, для яких існують рішення: ; ; ; ; .
Дата добавления: 2015-05-24; Просмотров: 704; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |