КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Закон двойного отрицания
Закон Дистрибутивности 32. (от англ. distribution - распределение, размещение) - общее название группы логических законов сходной структуры. Эти законы позволяют распределить одну логическую связь относительно другой. Полный 3. д. конъюнкции относительно дизъюнкции с использованием символики логической формулируется так (р, q, r — некоторые высказывания; & - конъюнкция, «и»; v - дизъюнкция, «или»; = — эквивалентность, «если и только если»): p&(qvr) = (p&q)v(p&r), первое и (второе или третье), если и только если (первое и второе) или (первое и третье). Напр.: «Сегодня идет дождь и завтра ясно или послезавтра ясно в том и только в том случае, когда сегодня идет дождь и завтра ясно или сегодня идет дождь и послезавтра ясно». Полный 3. д. дизъюнкции относительно конъюнкции: pv(q&r) = (pvq)&(pvr), первое или (второе и третье), если и только если (первое или второе) и (первое или тре'тье). Напр.: «Завтра будет солнечно или послезавтра будет мороз и снег тогда и только тогда, когда завтра будет солнечно или послезавтра будет мороз и завтра будет солнечно или послезавтра будет снег». Закон самодистрибутивности импликации (->, «если, то») дает возможность распределять импликацию по импликации: (p->(q->r))->((p->q)->(p->r)), если (если первое, то (если второе, то третье)), то (если (если первое, то второе), то (если первое, то третье)). Этот закон верен для импликации материальной, но не имеет места для целого ряда иных импликаций, вводимых в современной логике.
Закон Двойного Отрицания - - закон логики, позволяющий отбрасывать двойное отрицание. Его можно сформулировать так: отрицание отрицания дает утверждение, или: повторенное дважды отрицание ведет к утверждению. Напр.: «Если неверно, что Вселенная не является бесконечной, то она бесконечна». 3. д. о. был известен еще в античности. В частности, древнегреческие философы Зенон Элейский и Горгий излагали его так: если из отрицания к.-л. высказывания следует противоречие, то имеет место двойное отрицание исходного высказывания, т. е. оно само. С применением символики логической (р - некоторое высказывание; à - условная связь, «если, то»; ~ - отрицание, «неверно, что») закон записывается так: ~ ~ p à p, если неверно, что неверно р, то верно р. Другой закон логики, говорящий о возможности не снимать, а вводить два отрицания, принято называть обратным 3. д. о.: ут- верждение влечет свое двойное отрицание. Напр.: «Если Шекспир писал сонеты, то неверно, что он не писал сонеты». Символически: pà ~ ~p, если р, то неверно, что не-р. Объединение этих законов дает т. наз. полный 3. д. о.: двойное отрицание равносильно утверждению. Напр.: «Планеты не неподвижны в том и только том случае, если они движутся». Символически (= — эквивалентность, «если и только если»): ~ ~Р = Р, неверно, что не-р, если и только если верно р.
Дата добавления: 2015-05-09; Просмотров: 487; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |