КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Невласні інтеграли
Приклад 40. Метод інтегрування частинами у визначеному інтегралі Приклад 39. Обчислити визначені інтеграли методом підстановки: а) ; б) ; в) . Розв’язок. а) .
б) . в) . Якщо функції і мають неперервні похідні на відрізку , то формула інтегрування частинами має вигляд: . Обчислити визначені інтеграли методом інтегрування частинами: а) ; б) .
Розв’язок. а) .
б) .
Визначений інтеграл , у якому проміжок інтегрування – скінченний, а підінтегральна функція – неперервна на відрізку , називається власним інтегралом. Невласним інтегралом називається визначений інтеграл від неперервної функції, але з нескінченним проміжком інтегрування або визначений інтеграл з скінченним проміжком інтегрування, але від функції, що має на ньому нескінченний розрив. Відповідно, розрізняють невласні інтеграли I роду (з нескінченними межами) і II роду (інтеграл від розривної функції). Невласним інтегралом першого роду неперервної на інтервалі функції називається скінченна границя . Таким чином, за визначенням: . Якщо границя, яка знаходиться в правій частині рівності існує і скінченна, то невласний інтеграл збігається, у противному випадку – розбігається. Аналогічно визначається невласний інтеграл на інтервалі : . Невласний інтеграл із двома нескінченними межами (на інтервалі ) розбивається на два за формулою: , де – довільне число. Такий інтеграл збігається лише тоді, коли збігаються обидва інтеграли на які він розбивається.
Дата добавления: 2015-05-26; Просмотров: 1081; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |