Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Топливо и расчеты горения




  1. Характеристика топлива.

 

Энергетическим топливом называются горючие вещества, которые экономически целесообразно использовать для получения в промышленных целях больших количеств тепла. Основными его видами являются органические топлива: торф, горючие сланцы, угли, природный газ, продукты переработки нефти.

По способу получения различают природные и искусственные топлива. К природным относятся натуральные топлива: уголь, сланцы, торф, нефть, природные газы. Из твердых топлив к искусственным относятся кокс, брикеты угля, древесный уголь. Из жидких - мазут, бензин, керосин, соляровое масло, дизельное топливо. Из газовых — газы доменный, генераторный, коксовый, подземной газификации.

Торф, бурые угли, каменные угли и антрациты образовались в процессе последовательной углефикации отмершей растительной массы.

Основная выработка электрической и тепловой энергии производится на твердом топливе.

Характеристики и состав твердого топлива, в том числе выход летучих, спекаемость кокса, оказывают сильное влияние на процесс горения угля. С увеличением выхода летучих и содержания в них более реакционно-способных газов воспламенение топлива становится легче, а кокс благодаря большей пористости получается более реакционно-способным.

По этим свойствам каменных углей проводят их классификацию. Ископаемые угли подразделяются на три основных типа: бурые, каменные угли и антрацит.

Бурые угли. К бурым углям марки Б относят угли с неспекающимся коксом и высоким выходом летучих, обычно более 40%, и с высшей теплотой сгорания[1] рабочей массы без зольного угля, меньшей 5700 ккал/кг (23883 Дж/кг).

Бурые угли характеризуются высокой гигроскопической и в большинстве случаев высокой общей влажностью, пониженным содержанием углерода и повышенным содержанием кислорода по сравнению с каменными углями. Вследствие сильной балластированности золой (Ар=15-25%)[2] и влагой (Wp=20—35%) низшая теплота сгорания[3] бурых углей пониженная МДж/кг (2500-3600 ккал/кг).

Каменные угли. К каменным углям относят угли с высшей теплотой сгорания рабочей массы без зольного угля большей 5700 ккал/кг (23883 Дж/кг) и с выходом летучих более 9%. Основная масса их спекается. Часть их с выходом летучих веществ большим 42—45% (длиннопламенные) и меньшим 17% (тощие) - не спекается.

Каменные угли обладают относительно меньшим балластом: Ар=5-15%, Wp=5—10% и более высокой теплотой сгорания МДж/кг (5500—6500 ккал/кг).

Торф является химически и геологически наиболее молодым ископаемым твердым топливом и обладает высоким выходом летучих (Vг=70%), высокой влажностью (Wр=40—50%), умеренной зольностью (Aр=5—10%), низкой теплотой сгорания МДж/кг (2000—2500 ккал/кг).

Сланцы. В Эстонии большое значение имеют горючие сланцы, добываемые открытым способом. Зольность сланцев очень большая и доходит до Aр=50-60%, влажность также повышенная Wр=l5—20%. Вследствие большого балласта их теплота сгорания низкая МДж/кг (1400—2400 ккал/кг) при высокой теплоте сгорания горючей массы МДж/кг (6500—8000 ккал/кг). Высокое содержание водорода в горючей массе Hг=7,5—9,5% обусловливает большой выход летучих у сланцев, достигающий 80—90%, и их легкую воспламеняемость.

Топливо с высокой зольностью и влажностью вследствие большого содержания внешнего балласта целесообразно использовать вблизи места его добычи для уменьшения непроизводительных транспортных расходов на перевозку большой массы золы и влаги. В этом смысле такие топлива принято называть местными. К ним, в частности, относятся некоторые бурые угли, как, например, подмосковные, башкирские, украинские, торф и сланцы.

Мазут. Из жидких топлив в энергетике используется мазут трех марок — 40, 100 и 200. Марка определяется предельной вязкостью, составляющей при 80°С для мазута 40 — 8,0; для мазута 100 — 15,6; для мазута 200 — 6,5—9,5 град. усл. вязкости (°УВ) при 100°С.

В мазуте содержится углерода 84—86% и водорода — 11—12%, содержание влаги не превышает 3—4%, а золы — 0,5%. Мазут имеет высокую теплоту сгорания МДж/кг (9400—9600 ккал/кг).

По содержанию серы различают малосернистый мазут Sр≤0,5%, сернистый — Sр до 2% и высокосернистый Sр до 3,5%; по вязкости — маловязкий и высоковязкий, содержащий смолистые вещества и парафин. Наиболее вязкие сорта мазута имеют температуру застывания 25—35 0С. В связи с этим при сжигании применяется предварительный нагрев вязких мазутов до температуры 80—120°.

Природный газ. Большое значение в топливном балансе Украины имеют природные газы, представляющие собой смесь углеводородов, сероводорода и инертных газов: азота и углекислоты. Основной горючей составляющей природных газов является метан (от 80 до 98%), что обусловливает их высокую теплоту сгорания. В них инертных газов содержится немного: 0,1—0,3% С02 и 1—14% N2.

Теплота сгорания сухого природного газа МДж/м3 (8000—8500 ккал/м3).

Доменный газ образуется при выплавке чугуна в доменных печах. Его выход и химсостав зависят от свойств шихты и топлива, режима работы печи, способов интенсификации процесса и других факторов. Выход газа колеблется в пределах 1500-2500 м3 на тонну чугуна. Доля негорючих компонентов (N2 и CO2) в доменном газе составляет около 70%, что и обуславливает его низкие теплотехнические показатели (низшая теплота сгорания газа равна 3-5 МДж/м3).

При сжигании доменного газа максимальная температура продуктов сгорания (без учёта тепловых потерь и расхода теплоты на диссоциацию CO2 и H2O) равна 1400-15000C. Если перед сжиганием газа его и воздух подогреть, то температуру продуктов сгорания можно значительно повысить.

Ферросплавный газ образуется при выплавке ферросплавов в рудовосстановительных печах. Газ, отходящий из закрытых печей, можно использовать в качестве топливных ВЭР (вторичные энергетические ресурсы). В открытых печах в связи со свободным доступом воздуха газ сгорает на колошнике.

Выход и состав ферросплавного газа зависит от марки выплавляемого сплава, состава шихты, режима работы печи, её мощности и т.п. Состав газа: 50-90% CO, 2-8% H2, 0,3-1% CH4, O2<1%, 2-5% CO2, остальное N2. Максимальная температура продуктов сгорания равна 2080 0C. Запылённость газа составляет 30-40 г/м3.

Конвертерный газ образуется при выплавке стали в кислородных конвертерах. Газ состоит в основном из оксида углерода, выход и состав его в течение плавки значительно изменяются. После очистки состав газа примерно таков: 70-80% CO; 15-20% CO2; 0,5-0,8% O2; 3-12% N2. Теплота сгорания газа составляет 8,4-9,2 МДж/м3. Максимальная температура сгорания достигает 2000 0С.

Коксовый газ образуется при коксовании угольной шихты. В чёрной металлургии он используется после извлечения химических продуктов.

Состав коксового газа зависит от свойств угольной шихты и условий коксования. Объёмные доли компонентов в газе находятся в следующих пределах, %: 52-62 H2; 0,3-0,6 O2; 23,5-26,5 CH4; 5,5-7,7 CO; 1,8-2,6 CO2. Теплота сгорания равна 17-17,6 МДж/м3, максимальная температура продуктов сгорания - 2070 0С.

 


 

  1. Понятие об условном топливе.

Различные виды органического топлива, используемые для энергообеспечения потребителей, при сжигании единицыо бъема или массы выделяют различное количество теплоты. Количество теп­лоты, выделяющееся при полном сгорании 1 кг твердого или жидкого топлива или 1 м3 газообразного топлива, называют теплотой сгорания топлива или теплотворной способностью топлива.

(1.1)

Для сопоставления энергетической ценности различных видов топлива и их суммарного уче­та введено понятие условного топлива. В качестве единицы условного топлива принимается топливо, которое имеет низшую теплоту сгорания, равную 7000 ккал/кг (29,33 МДж/кг). Зная теплотворную спо­собность любого вида топлива, можно определить его эквивалент в условном топливе.

В. = В

УІ ні 7000

Где Byj - расход /-того вида топлива в условном топливе, ВQ расход и теплотворная способ-

Н

Ность (ккал/кг) /-того вида топлива в натуральных единицах.

Для прямого и обратного пересчета единиц количества энергии можно использовать диаграмму (см. приложение 1). При составлении диаграммы для пересчета единиц потребления электрической энергии использованы теоретический эквивалент 0,123 кг у. т./кВтхч (коэффициент над линией) и средний по стране удельный расход условного топлива на выработку электроэнергии 0,320 кг у. т./ кВтхч. На диаграмме приняты величина теплотворной способности природного газа

Q =7950 ккал/ м3, а мазута Q = 9500 ккал/кг.

При использовании понятия условного топлива не учитывают затраты энергии на добычу топлива, его транспортировку потребителю, его подготовку или переработку.

Учесть эти затраты при анализе энергопотребления позволяет введение другой единицы - одной тонны первичного условного топлива.

Коэффициенты пересчета потребленного котельно-печного топлива в первичное составляют для 1 т органического топлива: мазута - 1,107; газа - 1,167; энергетического угля - 1,065 т у. т.

Примеры решения задач

 

  1. Химический состав топлива.

Свойства топлива, которые необходимо учитывать при орга­низации и осуществлении процесса его сжигания, определяются следующими характеристиками:

1) химическим составом;

2) теплотворной способностью;

3) содержанием летучих веществ (в твердом топливе);

4) температурой плавления золы (твердого топлива).

Химический состав рабочей массы твердого и жидкого топ­лива, т. е. той действительной массы, которая поступает в ко­тельную установку для сжигания, определяется содержанием в процентах по весу (рис. 2):

Угулерода СР%
Водорода ИР %
Кислорода ОР %
Азота КР %
Серы ЭР %
Золы АР %
Влаги РР %

Отсюда следует, что

Ср + Нр + Ор + Л/* + 5* + Ар + 1УР = 100 %.

В. И. Л ел л л. Собрание сочинений. Т. 19. М., Госполитиздат, 1952, стр. 42.

Влага топлива (МРР%) состоит из внешней и енутреН-

Рис. 2. Элементарный состав рабочего топлива.

Й гигроскопической влаги. Если пробу топлива подвергнуть Й6 ественной сушке до сохранения постоянного веса, то из нее валяется внешняя влага. Если же затем пробу топлива поместить в сушильный шкаф, где поддерживается температура Ю5° с, то вес этой пробы будет уменьшаться дополнительно вследствие удаления гигроскопиче­ской влаги. После полного высушива­ния топливо будет абсолютно сухим; его химический состав выразится суммой:

Сс-{ ис ьз* Лс=100%,

Где: С€, Нс> Ос N° & Ас — соответ­ствующие элементы состава сухой массы топлива в процентах по весу.

Зола топлива представляет со­бой минеральный остаток, образующийся после сжигания топлива. В технических анализах топлива содержание золы дается обычно в процентах на сухую

Массу (.Ас%).

Сера топлива состоит из органи­ческой (50рг) и колчеданной (5^) серы.

Органическая сера связана с горючими элементами топлива в виде сложных ор­ганических соединений. Колчеданная сера входит в состав топлива в виде колче­дана (РеБа).

Органическая и колчеданная ‘сера яв­ляется летучей серой, участвующей в го­рении. Кроме летучей серы, в топливе возможно присутствие сульфатной серы

Входящей в состав золы в виде солей серной кислоты (Са304, РеЭ04 и др.).

Принято считать балластом рабочего топлива (Б) сумму:

* Б=АР+У/Р%.

Горючей массой условно называется безводный и без - зольный состав топлив, т. е. состав, выражаемый суммой:

Сг 4- Нг + О2 + Л/* 4- = 100 %.

Условно все содержание серы отнесено к горючей массе, т. е.:

Если из горючей массы исключить серу, то остающийся со­став массы топлива называется органическим и выражается суммой:

С° + И° + 0° + № =100%.

 

  1. Теплота сгорания топлива. Определение теоретического объёма воздуха для горения метана.

 

О качестве топлива судят по его теплоте сгорания. Для характеристики твердых и жидких видов топлива служит показатель удельной теплоты сгорания, который представляет собой количество теплоты, выделяемое при полном сгорании единицы массы (кДж/кг). Для газообразных видов топлива применяется показатель объемной теплоты сгорания, представляющий собой количество теплоты выделяемое при сгорании единицы объема (кДж/м3). Кроме того, газообразное топливо в ряде случаев оценивают по количеству теплоты, выделяемой при полном сгорании одного моля газ (кДж/моль).
Теплоту сгорания определяют не только теоретически, но и опытным путем, сжигая определенное количество топлива в специальных приборах, называемых калориметрами. Теплоту сгорания оценивают по повышению температуры воды в колориметре. Результаты, полученные этим методом, близки к значениям, рассчитанным по элементарному составу топлива.
При сжигании одинаковых масс различных видов топлива выделяется различная теплота сгорания. Поэтому для удобства сравнительной оценки введено понятие условного топлива. За единицу его принято топлива, при полном сгорании 1 кг или 1 м3 которого выделяется 29307,6 кДж. Таким топливом является донецкий каменный уголь.
Горение – химический процесс соединения горючего вещества и окислителя. Практически горение представляет собой окисление топлива кислородом воздуха. В результате этого процесса выделяется определенное количество тепловой энергии и резко повышается температура.
Процесс горения топлива может протекать как при не достатке, так и при избытке окислителя. Топливо полностью сгорает при стехиометрическом соотношении топлива и окислителя, которое соответствует уравнениям химических реакций окисления горючих элементов. Для того чтобы судить о полноте сгорания топлива, необходимо знать: количество воздуха, теоретически необходимого для горения топлива; действительное количество воздуха, которое потребуется для полного сгорания топлива; теоретическую температуру горения; состав продуктов сгорания.
Количество кислорода, теоретически необходимое для сгорания 1 кг твердого или жидкого топлива может быть подсчитано на основании стехиометрических соотношений для реакций горения элементов горючей массы топлива. Исходя из этого, для полного сгорания 1 кг топлива рассматриваемого элементарного состава потребность кислорода может быть определена по следующей формуле.

В этом случае предполагается, что содержащийся в топливе кислород полностью затрачивается на горение. В действительности же при сжигании топлива подводится не чистый кислород, а воздух, в котором содержится лишь 23,2 % кислорода по массе. Тогда в действительности, теоретически не- обходимое количество воздуха в (кг) будет определяться следующим образом Если количество воздуха выражают в объемных единицах (м3), то уравнение для его определения выразится так
Однако в реальных условиях невозможно добиться полного сгорания топлива при наличии только теоретически необходимого количества воздуха. Поэтому, для полного сгорания топлива в двигатели внутреннего сгорания подают несколько большее количество воздуха, по сравнению с теоретически рассчитанным, называемое действительным.
Действительное количество воздуха при сгорании топлива определяют с помощью специальных газовых счетчиков или по коэффициенту избытка воздуха.
Коэффициентом избытка воздуха называется отношение количества воздуха действительно израсходованного на сгорание топлива Qд, к количеству воздуха теоретически рассчитанного необходимого для полного сгорания топлива Qт
Уменьшение коэффициента избытка воздуха по отношению к его оптимальному значению приводит к повышенному расходу топлива за счет не полного его сгорания. При чрезмерном увеличении коэф. избытка воздуха процесс сгорания будет менее эффективным из-за потерь на нагрев избыточного воздуха. Температуру, которую приобретают газообразные продукты сгорания, называют температурой горения топлива.
Процесс горения можно определять по составу продуктов сгорания топлива. Так, отсутствие в продуктах сгорания оксида углерода СО свидетельствует о полном сгорании топлива, и наоборот.
Для определения состава продуктов сгорания предназначены специальные приборы, которые позволяют в контролируемой трубе определить содержание углекислого газа СО2, оксида углерода СО и кислорода О2.
Так для карбюраторных двигателей содержание СО не должно превышать 1,5 % по массе от всех выхлопных газов, на минимальных оборотах холостого хода, и 2,0 % при повышенной частоте вращения коленчатого вала. Повышенная частота вращения коленчатого вала указывается в технических условиях эксплуатации для каждого двигателя индивидуально. А в общем случае она лежит в диапазоне от 2000 мин–1 до 0,8 частоты коленчатого вала, при которой двигатель развивает максимальную мощность. Однако во время эксплуатации при контрольных проверках на линии, допускается содержание СО до 3 % при минимальной частоте вращения коленчатого вала.
Дымность дизельных двигателей в эксплуатации не должна превышать 40 % в режиме свободного ускорения и 15 % при минимальной частоте вращения коленчатого вала. Содержание углеводородов не должно превышать 1200 объемных частей на 1 млн. объемных частей воздуха для двигателей с числом цилиндров до четырех включительно, и 3000 объемных частей на 1 млн. объемных частей воздуха для двигателей с числом цилиндров более четырех на минимальных оборотах холостого хода.

 


 

  1. Виды газообразного топлива. Их характеристики.

 

Основными видами газообразного топлива, используемого для газоснабжения городов и населенных пунктов, являются горючие газы с низшей теплотой сгорания не менее 12,57 мДж/м3.

Все виды газового топлива по способу получения подразделяются на природные и искусственные: к первой группе относятся газы природных месторождений и попутные газы газонефтяных месторождений, ко второй — коксовый, сланцевый и другие газы, получаемые путем термической переработки твердых топлив, а также газы, получаемые при переработке нефти.

Газовое топливо представляет собой смесь горючих и негорючих газов. Горючими являются метан, пропан, бутан, этан, водород и окись углерода; негорючими — азот, углекислый газ и кислород, а также некоторое количество примесей как горючих, так и негорючих веществ, количество которых лимитируется ГОСТ 5542—78.

Природные газы чисто газовых месторождений состоят в основном из метана (СН4), относятся к категории сухих (тощих) газов и характеризуются относительным постоянством состава, в то время как состав газов газонефтяных месторождений непостоянен и зависит от природы нефти, величины газового фактора и условий разделения нефтегазовых смесей.

Попутные газы из газовых шапок нефтяной залежи, как правило, содержат меньше тяжелых углеводородных газов, чем газы, получаемые из месторождений нефти, в которой они были растворены.

В народном хозяйстве широко применяются сжиженные углеводородные газы, которые находят применение в сельской местности и населенных пунктах, удаленных на значительные расстояния от магистральных газопроводов.

К сжиженным углеводородным газам относятся такие углеводороды, которые при нормальных условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления (без снижения температуры) переходят в жидкое состояние.

При снижении давления эти углеводородные жидкости испаряются и переходят в паровую фазу. Это позволяет перевозить и хранить сжиженные углеводороды, как жидкости, а контролировать, регулировать и сжигать газообразные углеводороды, как газы.

Особенностями газообразных углеводородов являются: высокая плотность, значительно превышающая плотность воздуха; медленная диффузия в атмосферу, низкие температуры воспламенения, низкие пределы взрываемости в воздухе, высокий объемный коэффициент расширения жидкой фазы и другие факторы, которые повышают требования при нх использовании.

Из углеводородных сжиженных газов в качестве топлива главным образом используются пропан, бутан и их смеси. Соотношение пропана и бутана в смеси этих газов устанавливается по соглашению между потребителем и поставщиком газа.

Технический пропан является универсальным сжиженным газом, так как он может применяться при естественном и искусственном испарении жидкости в пределах изменения температур от +45 до —35 °С. Это позволяет в любое время года устанавливать баллоны и резервуары с жидким пропаном в отапливаемых и неотапливаемых помещениях, снаружи здания и в грунте. Достоинством пропана является и то, что образующиеся в начале и в конце опорожнения емкостей пары при любом методе испарения почти однородны по своему составу.

Газ, подаваемый в города и населенные пункты, согласно ГОСТ 5542—78 должен удовлетворять следующим требованиям: содержание в нем вредных примесей на 100 м3 газа не должно превышать (г):

сероводорода 2 смолы и пыли 0,1

аммиака 2 нафталина летом... 10

цианистых соединений нафталина зимой... 5

в пересчете на HCN.. 5

Содержание кислорода не должно быть более 1 % по объему.

Запах нетоксичных газов должен ощущаться при содержании их в воздухе в количестве не более 1/5 от нижнего предела воспламеняемости, а запах токсичных газов — при содержании их в воздухе и в количествах, допускаемых санитарными нормами, для чего газ должен одорироваться, если он не обладает достаточно сильным и характерным запахом.

 




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 3810; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.048 сек.